K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

bài này dễ lắm

câu a bạn tự làm nha vì nó quá dễ rồi

b) Mình xin đính chính lại là P là trung điểm của AB chứ không phải B, bạn viết lộn rùi

Gọi O là giao điểm của PN và AH

Ta có: P là trung điểm của AB (gt)

          BO// BH ( t/c đướng trung bình, đã cm ở câu a)

  => O là trung điểm của AH => AO = OH

Xét tam giác APO và tam giác HPO có:

     BO là cạnh chung

     Góc POH = góc POA = 90 độ ( PN là đướng trung trực của AH )

     AO = HO (cmt)

 => Tam giác APO = tam giác HPO ( c-g-c)

 => Góc OPH = góc OPA ( 2 góc tương ứng) (5)

Ta có: PN là đướng trung bình của tam giác ABC ( cm ở câu a)

   => PN = \(\frac{1}{2}\)BC (1) => PN // BC

  Mà M là trung điểm của BC (gt) => BM = MC = \(\frac{1}{2}\)BC (2)

Từ (1) và (2) => PN = BM = MC hay PN = BM, PN = BM (3)

 Ta lại có: PN//BC => PN//BM (4)

 Từ (3) và ( 4) => PNMB là hình bình bình hành => NM //PB => NM//AP => góc OPA = góc MNP ( cặp góc slt) (6)

Mà PN//HM ( PN//BC, t/c đướng trung bình) => MNPH là hình thang (7)

 Từ(5), (6) và (7) MNPH là hình thang cân

14 tháng 9 2017

BO sao lại sog song với BH

21 tháng 12 2017

a)  \(\Delta ABC\) có  MA = MB;  NA = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)MN // BC

\(\Rightarrow\)Tứ giác BMNC là hình thang

b)  \(\Delta ABC\)có  NA = NC;  QB = QC

\(\Rightarrow\)NQ // AB;   NQ = 1/2 AB

mà   MA = 1/2 AB

\(\Rightarrow\)NQ = MA

Tứ giác AMQN có   NQ // AM;   NQ = AM

\(\Rightarrow\)AMQN là hình bình hành

21 tháng 12 2017

c)  E là điểm đối xứng của H qua M

\(\Rightarrow\)ME = MH

Tứ giác AHBE  có  MA = MB (gt);  ME = MH (gt)

\(\Rightarrow\)AHBE là hình bình hành

mà  \(\widehat{AHB}\)= 900

\(\Rightarrow\)hình bình hành AHBE  là  hình  chữ nhật

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0

a: Xét ΔABC có

M là trung điểm của BA
N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN=BE và MN//BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM

=>M nằm trên đường trung trực của AH(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2=AN

=>N nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra MN là đường trung trực của AH

Xét ΔABC có 

M là trung điểm của AB

E là trung điểm của BC

Do đó: ME là đường trung bình

=>ME=AC/2

mà HN=AC/2

nên ME=HN

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.