\(a,b\ge0\) thỏa mãn \(\sqrt{a}+\sqrt{b}=1\) . Chứng m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

15 tháng 8 2017

Ta cm bằng cách bđ tương đương 

\(Cm:ab\left(a+b\right)^2\le\frac{1}{64}\Leftrightarrow64ab\left(a+b\right)^2\le1\Leftrightarrow8\left(a+b\right)\sqrt{ab}\le1.\)

Ta có:

\(8\left(a+b\right)\sqrt{ab}=4.\left(a+b\right).2\sqrt{ab}\le4.\frac{a+b+2\sqrt{ab}}{4}=\left(\sqrt{a}+\sqrt{b}\right)^2=1\left(đpcm\right)\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{4}\)

7 tháng 5 2018

\(VT\le\sqrt{\left(1+1\right)\left(2ab+a+b\right)}\)

\(\le\sqrt{\left(1+1\right)\left(\frac{\left(a+b\right)^2}{2}+a+b\right)}\)

\(\le\sqrt{\left(1+1\right)\left(\frac{2^2}{2}+2\right)}=2\sqrt{2}\)

Dấu "=" khi \(a=b=1\)

NV
11 tháng 8 2020

Từ kết quả bài toán suy ngược ra thôi

Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức

NV
11 tháng 8 2020

Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)

Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

4 tháng 10 2017

thangbnsh@gmail.com helpme

4 tháng 10 2017

thangbnsh@gmail.comacelegona

1 tháng 6 2019

Ta có \(\sqrt{3b\left(a+2b\right)}\le\frac{1}{2}\left(3b+a+2b\right)=\frac{1}{2}\left(a+5b\right)\)

        \(\sqrt{3a\left(b+2a\right)}\le\frac{1}{2}\left(5a+b\right)\)

=> \(P\le\frac{1}{2}\left(a^2+b^2+10ab\right)\)

Mà \(ab\le\frac{1}{2}\left(a^2+b^2\right)\le\frac{1}{2}.2=1\)

=> \(P\le\frac{1}{2}\left(2+10\right)=6\)

Vậy MaxP=6 khi a=b=1

2 tháng 6 2019

Cảm ơn bạn Trần Phúc Khang ạ.