Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x1^2+x2^2=(x1+x2)^2-2x1x2
x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)
áp dụng viét thay vô
b) giải hệ pt
đenta>=0
x1+x2=-m
x1x2=m+3
và 2x1+3x2=5
c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại
d)áp dụng viét
x1+x2=-m
x1x2=m+3
CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3
a) Tự giải
b) xét denta, đặt điều kiện của m
xét viet x1+x2 vs x1.x2
từ x1^3x2 + x1x2^3 =-11 => x1x2(x1^2+x2^2) = -11 =>x1x2((x1+x2)^2)-2x1x2) =-11
thế viet vao giải, nhơ so sánh đk
a,Phần này dễ, bạn tự làm nha!! :))
b, Để phương trình có 2 nghiệm khác 0 thì: \(\Delta^'\ge0\)
Hay: \(\left(-1\right)^2-\left(-3m^2\right)\ge0\)
\(\Leftrightarrow1+3m^2\ge0\)
Mà: \(1+3m^2>0\forall m\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-3m^2\end{cases}}\)
Ta có: \(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)
\(\Leftrightarrow\frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1-x_2\right)^2}}{x_1x_2}=\frac{8}{3}\) (x1>x2)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{2\sqrt{2^2-4\left(-3m^2\right)}}{-3m^2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{2\sqrt{4+12m^2}}{-3m^2}=\frac{8}{3}\)
\(\Leftrightarrow6\sqrt{4+12m^2}=-24m^2\)
Mà: \(6\sqrt{4+12m^2}\ge0\forall m\)
và \(-24m^2\le0\forall m\)
=> Không có giá trị của m thỏa mãn
=.= hk tốt!!
( Có gì sai sót mong bạn bỏ qua ạ ><)
1) phương trình có 2 nghiệm phân biệt <=> \(\Delta=9-4m>0\Leftrightarrow m< \dfrac{9}{4}\) .
ta có: x13x2+x1x23=x1.x2(x12+x22)=x1x2((x1+x2)2-2x1x2)=7 (*)
(với x1,x2 là hai nghiệm của phương trình).
theo viet ta có x1.x2=m; x1+x2=3 thay vào (*) ta được:
m(9-2m)=7<=> -2m2+9m-7=0<=> m=7/2(loại) hoặc m=1.(TM)
vậy m=1
2) B(xB;yB) thuộc (P): y=2x2 và xB=-2 => yB=2.(-2)2=8
=> B(-2;8)
đồ thị hàm số y=ax+b đi qua điểm A(1;-2) và điểm B(-2;8) <=>
\(\left\{{}\begin{matrix}a+b=-2\\-2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{10}{3}\\b=\dfrac{4}{3}\end{matrix}\right.\)