K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

Bai 1

Bo de :  \(\Delta ABC\) trung tuyen AD 

\(\Rightarrow S_{ADB}=S_{ADC}\)

cai nay ban tu chung minh nha

Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)

ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)

That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)

=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)

=> dpcm

16 tháng 12 2019

Hình như sai ở dòng thứ 2 từ dưới lên trên ấy

AH
Akai Haruma
Giáo viên
3 tháng 5 2018

Lời giải:

Bạn tự vẽ hình nhé.

a) Ta thấy \(\widehat{MFC}=90^0-\widehat{MAF}(1)\)

VÌ $AM$ là trung tuyến ứng với cạnh huyền nên \(AM=\frac{BC}{2}=BM=MC\)

\(\Rightarrow \triangle AMB\) cân tại $M$

\(\Rightarrow \widehat{MBE}=\widehat{MBA}=\widehat{MAB}=90^0-\widehat{MAF}(2)\)

Từ \((1);(2)\Rightarrow \widehat{MFC}=\widehat{MBE}\)

Xét tam giác $MBE$ và $MFC$ có:

\(\left\{\begin{matrix} \widehat{MBE}=\widehat{MFC}\\ \widehat{BME}=\widehat{FMC}(\text{đối đỉnh})\end{matrix}\right.\) \(\Rightarrow \triangle MBE\sim \triangle MFC(g.g)\)

b) Theo phần a thì \(\widehat{MBE}=\widehat{MFC}\Leftrightarrow \widehat{ABC}=\widehat{AFE}\)

Xét tam giác $ABC$ và $AFE$ có:

\(\left\{\begin{matrix} \widehat{ABC}=\widehat{AFE}\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle ABC\sim \triangle AFE(g.g)\)

\(\Rightarrow \frac{AB}{AF}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AF\)

c)

Do $AH,AM$ là hai đường cao tương ứng đỉnh $A$ của hai tam giác đồng dạng $ABC$ và $AFE$ nên \(\frac{AH}{AM}=\frac{AB}{AF}=\frac{AC}{AE}\)

Do đó \(\frac{S_{ABC}}{S_{AEF}}=\frac{\frac{AB.AC}{2}}{\frac{AE.AF}{2}}=\frac{AB}{AF}.\frac{AC}{AE}=\left(\frac{AH}{AM}\right)^2(*)\)

Xét tam giác $AMI$ và $AHM$ có:

\(\left\{\begin{matrix} \text{chung góc A}\\ \widehat{AMI}=\widehat{AHM}=90^0\end{matrix}\right.\Rightarrow \triangle AMI\sim \triangle AHM(g.g)\)

\(\Rightarrow \frac{AM}{AI}=\frac{AH}{AM}(**)\)

Từ \((*);(**)\Rightarrow \frac{S_{ABC}}{S_{AEF}}=\left(\frac{AM}{AI}\right)^2\) (đpcm)

3 tháng 5 2020

a, XÉt Δ AEF và ΔABC

AE/AF=ABAC⇒AE/AB=AF/AC

góc BACchung

=> Δ AEF ∼ ΔABC (đpcm)

b, mk ko hiểu

1/ a. Chứng minh công thức Hê-rông tính diện tích tam giác theo 3 cạnh a,b,c S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) (p là nửa chu vi) b. Áp dụng chứng minh rằng nếu \(S=\dfrac{1}{4}\left(a+b-c\right)\left(a+c-b\right)\) thì tam giác đó là tam giác vuông 2/ Cho tứ giác ABCD. Lấy \(M,N\in AB\) sao cho AM=MN=NB. Lấy \(E,F\in BC\) sao cho BE=EF=FC. Lấy \(P,Q\in CD\) sao cho CP=PQ=QD. Lấy \(G,H\in AD\) sao cho DG=GH=HA. Gọi...
Đọc tiếp

1/ a. Chứng minh công thức Hê-rông tính diện tích tam giác theo 3 cạnh a,b,c S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) (p là nửa chu vi)

b. Áp dụng chứng minh rằng nếu \(S=\dfrac{1}{4}\left(a+b-c\right)\left(a+c-b\right)\) thì tam giác đó là tam giác vuông

2/ Cho tứ giác ABCD. Lấy \(M,N\in AB\) sao cho AM=MN=NB. Lấy \(E,F\in BC\) sao cho BE=EF=FC. Lấy \(P,Q\in CD\) sao cho CP=PQ=QD. Lấy \(G,H\in AD\) sao cho DG=GH=HA. Gọi A',B' là giao điểm của MQ và NP với EH, C',D' là giao điểm của MQ và NP với FG. Chứng minh rằng

a. \(S_{MNPQ}=\dfrac{1}{3}S_{ABCD}\) b. \(S_{A'B'C'D'}=\dfrac{1}{9}S_{ABCD}\)

3/ Lấy M tùy ý nằm trong tam giác ABC. Gọi D,E,F là hình chiếu của M trên BC,AC,AB. Đặt BC=a,AC=b,AB=c,MD=x,ME=y,MF=z. Chứng minh rằng

a. ax+by+cz=2S (S=Sabc)

b. \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\ge\dfrac{2p^2}{S}\) (\(p=\dfrac{a+b+c}{2}\) )

0
bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
19 tháng 8 2019

a) AEBF là hình thang vuôngvì EF là đường trung bình \(\Rightarrow EF//AB\)

b) Xét hai tam giác vuông ABK và EIK có góc EKI = góc AKB nên \(\Delta ABK\approx\Delta IEK\)

\(\Rightarrow\frac{AB}{BK}=\frac{EI}{EK}\)

c) Xét \(\Delta AKB=\Delta AKH\left(ch-gn\right)\)

+ AK chung

+ Góc BAK = góc HAK

Vậy BK = HK

Gọi giao điểm của HK và AK là P

Xét \(\Delta PBK=\Delta PHK\left(c.g.c\right)\)

+ PK Chung

+ BK = HK

+ Góc PKB = góc PKH 

Suy ra góc PBK = góc PHK 

Ta có 

\(\hept{\begin{cases}\widehat{PBK}+\widehat{ABP}=90^0\\\widehat{BAP}+\widehat{ABP}=90^0\end{cases}}\Rightarrow\widehat{PBK}=\widehat{BAP}=\widehat{IAF}\left(1\right)\)

\(\hept{\begin{cases}\widehat{EKI}=\widehat{PKB}=\widehat{PKH}\\\widehat{EIK}+\widehat{EKI}=90^0\end{cases}}\)

Mà \(\hept{\begin{cases}\widehat{PKH}+\widehat{PHK}=90^0\\\widehat{EIK}+\widehat{PKH}=90^0\end{cases}\Rightarrow}\widehat{BHK}=\widehat{EIK}\left(2\right)\)

Từ (1) và (2) ta có đpcm vì hai tam giác BKH và AFI đều là hai tam giác cân có hai góc ở đáy bằng nhau 

Nên hai tam giác trên đồng dạng

d)

20 tháng 1 2020

a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2

Tính được AH theo định lý Pytago: AH = a32a32

=> Diện tích của tam giác ABC là: 12.a32.a=a23412.a32.a=a234

b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều

c) Tam giác DEF và tam giác ABC đồng dạng

=> SDEF/SABC = (DE/AB)2