Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông ADB và tam giác vuông ACE có:
Góc A chung
AB = AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\) (Cạnh huyền - góc nhọn)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)
Xét tam giác vuông AEH và tam giác vuông ADH có:
Cạnh AH chung
AE = AD (cmt)
\(\Rightarrow\Delta AEH=\Delta ADH\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HE=HD\)
c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.
Lại có AM cũng là đường cao nên AM đi qua H.
d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)
Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)
Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)
\(=3EC^2+2EA^2+BC^2\).
Xin lỗi mink mới học có lớp 5 thôi à nên MINK ko thể giúp bn đc xin lỗi NGUYỄN ANH TÚ
B B C C H H A A M M N N
a) Xét hai tam giác vuông AHB và AHC có:
Cạnh AH chung
AB = AC (Tam giác ABC cân tại A)
\(\Rightarrow\Delta AHB=\Delta AHC\) (Cạnh huyền - cạnh góc vuông)
b) Do \(\Delta AHB=\Delta AHC\Rightarrow\widehat{MAH}=\widehat{NAH}\)
Xét hai tam giác vuông AMH và ANH có:
Cạnh AH chung
\(\widehat{MAH}=\widehat{NAH}\)
\(\Rightarrow\Delta AMH=\Delta ANH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AM=AN\)
c) Xét tam giác AMN cân tại A nên \(\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\)
Tam giác ABC cũng cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)
Suy ra \(\widehat{AMN}=\widehat{ABC}\)
Chúng lại ở vị trí đồng vị nên MN // BC.
d) Xét hai tam giác vuông BMH và CNH có:
BH = CH (Do \(\Delta AHB=\Delta AHC\))
\(\widehat{MBH}=\widehat{NCH}\)
\(\Rightarrow\Delta BMH=\Delta CNH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow MH=NH\)
\(\Rightarrow MH^2=NH^2\Rightarrow BH^2-MB^2=AH^2-AN^2\)
\(AH^2+BM^2=AN^2+BH^2\)
Có lẽ câu mà cậu chưa làm được là c nhưng rất tiếc là tớ đang trong tình trạng suy nghĩ :v
a)
*) Ta có: \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}=\widehat{EAB}\)
Xét tam giác DAC và tam giác BAE
DA=BA
\(\widehat{DAC}=\widehat{BAE}\)
AC=AE
=> \(\Delta DAC=\Delta BAE\left(c.g.c\right)\) => DC=BE (cạnh tương ứng) và \(\widehat{E_1}=\widehat{C_1}\) (góc tương ứng)
*) Trong tam giác ANE có: \(90^o+\widehat{E_1}+\widehat{N_1}=180^o\) (1)
*) Trong tam giác TNC có: \(\widehat{NTC}+\widehat{C_1}+\widehat{N_2}=180^o\) (2)
Từ 1 và 2 => \(90^o+\widehat{E_1}+\widehat{N_1}=\widehat{NTC}+\widehat{C_1}+\widehat{N_2}\) Mà \(\widehat{E_1}=\widehat{C_1}\) và \(\widehat{N_1}=\widehat{N_2}\) (Góc đối đỉnh)
=> \(\widehat{NTC}=90^o\)
b) Do tam giác DTB là tam giác vuông. Áp dụng định lý Py-ta-go, ta có:\(DB^2=DT^2+BT^2\) (1)
Và tam giác TEC cũng là tam giác vuông => \(EC^2=ET^2+TC^2\) (2)
Từ 1 và 2 => \(DB^2+EC^2=DT^2+BT^2+ET^2+TC^2=\left(TB^2+TC^2\right)+\left(TD^2+TE^2\right)=DE^2+BC^2\)
Câu c thì bạn chỉ cần vẽ thêm 1 đường vuông góc với cạnh đối điện rồi làm thôi .....
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hình như bạn chép sai đầu bài rồi