K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 3:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)

=>a=-3; b=-9

29 tháng 3 2016

1)x+2x=0

=>x(x+2)=0

Xét x=0 hoặc x+2=0

                      x=-2

Vậy x=0 hoặc x=-2

2)x+2x-3=0

=x-1x+3x-3=0

=x(x-1)+3(x-1)=0

=(x-1)(x-3)=0

Xét x-1=0 hoặc x-3=0

     x=1            x=3

Tự KL nha

1/ Tìm nghiệm của đa thức:a. x2+\({\sqrt{3}}\) b. x2+2xc. x2+2x-32/ Xác định hệ số m để các đa thức sau nhận 1 làm một nghiệm :a. mx2+2x+8b. 7x2+mx-1c. x5-3x2+m3/ Cho đa thức: f(x): x2+mx+2a. Xác định m để f(x) nhận -2 làm một nghiệm.b. Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.4/ Cho biết: (x-1)f(x)=(x-4)f(x-8) với mọi xCM: f(x) có ít nhất 2 nghiệm.5/ Tìm đa thức f(x) rồi tìm...
Đọc tiếp

1/ Tìm nghiệm của đa thức:

a. x2+\({\sqrt{3}}\) 

b. x2+2x

c. x2+2x-3

2/ Xác định hệ số m để các đa thức sau nhận 1 làm một nghiệm :

a. mx2+2x+8

b. 7x2+mx-1

c. x5-3x2+m

3/ Cho đa thức: f(x): x2+mx+2

a. Xác định m để f(x) nhận -2 làm một nghiệm.

b. Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.

4/ Cho biết: (x-1)f(x)=(x-4)f(x-8) với mọi x

CM: f(x) có ít nhất 2 nghiệm.

5/ Tìm đa thức f(x) rồi tìm nghiệm của f(x) biết rằng: 

x3+2x2(4y-1)-4xy2-9y3-f(x)=-53+8 x2y-4xy2-9y3

6/ Cho S=abc+bca+cab

CM: S không phải là số chính phương.

7/ Tìm các số có 3 chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngươc lại là 1 số chính phương.

8/ Tìm số tự nhiên abc (a>b>c>0) sao cho abc+bca+cab=666

(Mọi người dùng kiến thức lớp 7 để giải nhe.)

0
1/ Tìm nghiệm của đa thức:a. x2+\(\sqrt{3}\)​ b. x2+2xc. x2+2x-32/ Xác định hệ số m để các đa thức sau nhận 1 làm một nghiệm :a. mx2+2x+8b. 7x2+mx-1c. x5-3x2+m3/ Cho đa thức: f(x): x2+mx+2a. Xác định m để f(x) nhận -2 làm một nghiệm.b. Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.4/ Cho biết: (x-1)f(x)=(x-4)f(x-8) với mọi xCM: f(x) có ít nhất 2 nghiệm.5/ Tìm đa thức f(x) rồi tìm...
Đọc tiếp

1/ Tìm nghiệm của đa thức:

a. x2+\(\sqrt{3}\)​ 

b. x2+2x

c. x2+2x-3

2/ Xác định hệ số m để các đa thức sau nhận 1 làm một nghiệm :

a. mx2+2x+8

b. 7x2+mx-1

c. x5-3x2+m

3/ Cho đa thức: f(x): x2+mx+2

a. Xác định m để f(x) nhận -2 làm một nghiệm.

b. Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.

4/ Cho biết: (x-1)f(x)=(x-4)f(x-8) với mọi x

CM: f(x) có ít nhất 2 nghiệm.

5/ Tìm đa thức f(x) rồi tìm nghiệm của f(x) biết rằng: 

x3+2x2(4y-1)-4xy2-9y3-f(x)=-53+8 x2y-4xy2-9y3

6/ Cho S=abc+bca+cab

CM: S không phải là số chính phương.

7/ Tìm các số có 3 chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngươc lại là 1 số chính phương.

8/ Tìm số tự nhiên abc (a>b>c>0) sao cho abc+bca+cab=666

(Mọi người dùng kiến thức lớp 7 để giải nhe.)

0
29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha

a,ta có:

 f(1)= a.12+2.1+b=0

=>       a+2+b=0

=>        a+b=-2 (1)

f(-2)= a.(-2)2+2.(-2)+b=0

 => 4a - 4 + b=0

=> 4a+b=4    (2)

Trừ vế (2) cho vế (1) ,ta có:

  3a=6

=>a= 2

thay a =2 vào (1), ta có: 2+b=-2 => b= -4

Vậy a=2, b=-4

b,Do g(x) có 2 nghiệm 1 và -1 nên:

g(1)=3.13 + a.12+b.1+c = 0

=> 3+a+b+c =0

=> a+b+c = -3 (1)

g(-1) = 3. (-1)3+a.(-1)2+b(-1)+c=0

=> -3 +a -b+c =0

=> a-b+c=3    (2)

Trừ vế (1) cho vế (2), ta có:

2b=-6 

=> b=-3

thay b=-3 vào (1), ta có:

a-3+c=-3

=> a+c=0

=> a+ 2a +1=0

=> 3a=-1

=> a= \(-\frac{1}{3}\)

Khi đó ta có:  \(-\frac{1}{3}+c=0\Rightarrow c=\frac{1}{3}\)

Vậy:...

6 tháng 4 2017

\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)

=> x = 1 và x = 3 là nghiệm của đa thức f(x)

Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)

=> nghiệm của đa thức g(x) là x = { 1; 3 }

Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)

\(\Rightarrow-a+b=2\)(1)

Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)

\(\Rightarrow3a-b=8\)(2)

Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10

=> 2a = 10 => a = 5

=> - 5 + b = 2 => b = 7

Vậy a = 5 ; b = 7

6 tháng 4 2017

(x-1)(x-3)=0

=>x-1=0 hoặc x-3=0

=>x=1 hoặc x=3

Vậy nghiệm của f(x) là 1 và 3

Nghiệm của g(x) cũng là 1 và 3

Với x=1 ta có g(x)=1+a+b-3=0

=>a+b-2=0

a+b=2

Với x=3 ta có g(x)=27-9a+3b-3=0

=>24-9a+3b=0

=>8-3a+b=0

=>3a-b=8

a=\(\frac{8+b}{3}\)

Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)