Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(f(x)=ax^2+bx+c\Rightarrow \left\{\begin{matrix} f(-2)=a(-2)^2+b(-2)+c=4a-2b+c\\ f(3)=a.3^2+b.3+c=9a+3b+c\end{matrix}\right.\)
\(\Rightarrow f(-2)+f(3)=(4a-2b+c)+(9a+3b+c)\)
\(=13a+b+2c=0\)
\(\Rightarrow f(-2)=-f(3)\Rightarrow f(-2)f(3)=-f(3)^2\leq 0\) do \(f(3)^2\geq 0\)
Ta có đpcm.
Bài 2:
Thay $x=-3$ ta có:
\(f(-3)=a.(-3)+5=-2\)
\(\Rightarrow a=\frac{7}{3}\)
Vậy $a=\frac{7}{3}$
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\left(-1\right)^3+a\cdot\left(-1\right)^2+b\cdot\left(-1\right)-2=0\\1^3+a\cdot1^2+b\cdot1-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=3\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Vậy: \(f\left(x\right)=x^3+2x^2-x-2\)
Đặt f(x)=0
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
=>Nghiệm còn lại là x=-2
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...