K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(S_{99}=\dfrac{99\cdot\left[2\cdot6+98\cdot\left(-2\right)\right]}{2}=99\cdot\left(6-98\right)\)

=-9108

2: \(S_{100}=\dfrac{100\cdot\left(2\cdot\left(-2\right)+99\cdot4\right)}{2}=50\left(-4+99\cdot4\right)\)

=50*392

=19600

9 tháng 4 2017

a) Ta có:

{5u1+10u=0S4=14{5u1+10u=0S4=14

⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3

Vậy số hạng đầu u1 = 8, công sai d = -3

b) Ta có:

{u7+u15=60u24+u212=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2){u7+u15=60u42+u122=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2)

(1) ⇔ 2u1 + 20d = 60 ⇔ u1 = 30 – 10d thế vào (2)

(2) ⇔[(30 – 10D) + 3d]2 + [(30 – 10d) + 11d]2 = 1170

⇔ (30 – 7d)2 + (30 + d)2 = 1170

⇔900 – 420d + 49d2 + 900 + 60d + d2 = 1170

⇔ 50d2 – 360d + 630 = 0

⇔[d=3⇒u1=0d=215⇒u1=−12⇔[d=3⇒u1=0d=215⇒u1=−12

Vậy

{u1=0d=3{u1=0d=3

hay

{u1=−12d=215



19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

16 tháng 9 2023

\(Bài.1:\\ u_7=u_1+6d\\ \Leftrightarrow-10=2+6d\\ \Rightarrow6d=-10-2=-12\\ Vậy:d=\dfrac{-12}{6}=-2\\ Bài.2:S_{10}=10.u_1+\dfrac{10.\left(10-1\right)}{2}.d=10.1+\dfrac{10.9}{2}.2=100\\ Bài.3:S_{2019}=2019.u_1+\dfrac{2019.\left(2019-1\right)}{2}.d\\ =2019.3+\dfrac{2019.2018}{2}.2=2019.2021=4080399\)

16 tháng 9 2023

Bài 4:

\(d=u_2=u_1=5-2=3\)

Bài 5:

\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow2018=2+\left(n-1\right).9\\ \Leftrightarrow2+9n-9=2018\\ \Leftrightarrow9n=2018-2+9\\ \Leftrightarrow9n=2025\\ \Leftrightarrow n=\dfrac{2025}{9}=225\)

Vậy: 2018 là số hạng thứ 225 của dãy

Bài 6:

Đề chưa có yêu cầu

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,u_1+u_n=u_1+\left[u_1+\left(n-1\right)d\right]=u_1+u_1+\left(n-1\right)d=2u_1+\left(n-1\right)d\\ u_2+u_{n-1}=\left[u_1+d\right]+\left[u_1+\left(n-2\right)d\right]=2u_1+\left(n-1\right)d\\ ...\\ u_k+u_{n-k+1}=\left[u_1+\left(k-1\right)d\right]+\left[u_1+\left(n-k+1-1\right)d\right]=2u_1+\left(n-1\right)d\)

\(b,u_1+u_n=2u_1+\left(n-1\right)d\\ u_2+u_{n-1}=2u_1+\left(n-1\right)d\\ ...\\ u_n+u_1=2u_1+\left(n-1\right)d\)

Cộng vế với vế, ta được:

\(2\left(u_1+u_2+...+u_n\right)=n\left[2u_1+\left(n-1\right)d\right]\\ \Leftrightarrow2\left(u_1+u_2+...+u_n\right)=n\left(u_1+u_n\right)\)

20 tháng 12 2019
https://i.imgur.com/WVXFRAn.jpg
17 tháng 9 2023

1) \(\left(u_n\right):\left\{{}\begin{matrix}u_1=-7\\q=2\end{matrix}\right.\)

\(u_5=-7.q^4=-7.16=-112\)

\(u_m=u_1.q^{m-1}\)

\(\Leftrightarrow-7.2^{m-1}=-3584\)

\(\Leftrightarrow2^{m-1}=512=2^9\)

\(\Leftrightarrow m-1=9\)

\(\Leftrightarrow m=10\)

Vậy số \(-3584\) là số thứ \(10\) của cấp số nhân

17 tháng 9 2023

\(\left(u_n\right):\left\{{}\begin{matrix}u_1=-3\\q=-2\end{matrix}\right.\)

\(u_{10}=-u_1.q^9=-3.\left(-2\right)^9=1536\)

\(u_m=u_1.q^{m-1}\)

\(\Leftrightarrow-3.\left(-2\right)^{m-1}=-3072\)

\(\Leftrightarrow\left(-2\right)^{m-1}=1024=\left(-2\right)^{10}\)

\(\Leftrightarrow m-1=10\)

\(\Leftrightarrow m=11\)

Vậy số \(-3072\) là số thứ \(11\) của cấp số nhân.