Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a² + b² = c² + d² =>a²-c²=d²-b²
=>(a-c)(a+c)=(d-b)(d+b)
Ta lại có: a + b = c + d
=> a- c = d - b
Nếu a = c => b = d thì
a²⁰¹³ + b²⁰¹³ = c²⁰¹³ + d²⁰¹³ (đúng).
Nếu a≠c =>b≠d
=>a-c=d-b ≠ 0
Khi đó biểu thức (1) trở thành:
a+c=b+d (vì a-c, d-b ≠ 0)
mà: a + b = c + d
Cộng hai biểu thức theo vế ta được: 2a+b+c=b+c+2d
=>2a=2d =>a=d =>b=c
Vì a=d và b=c nên biểu thức a²⁰¹³ + b²⁰¹³ = c²⁰¹³ + d²⁰¹³ đúng.
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Ta có: a+b=c+d
=>a-c=d-b
Lại có:a2+b2=c2+d2
=>a^2-c^2=d^2-b^2
=>(a-c*(a+c
a+b=c+d
<=>(a+b)2=(c+d)2
<=>a2+b2+2ab=c2+d2+2cd
<=>2ab=2cd<=>ab=cd <=> \(\frac{a}{d}=\frac{c}{b}\)
đặt \(\frac{a}{d}=\frac{c}{b}=k=>a=dk;c=bk\)
có a2+b2=c2+d2
<=>(dk)2+b2=(bk)2+d2
<=>(dk)2-d2=(bk)2-b2
<=>d2(k2-1)-b2(k2-1)=0
<=>(k2-1)(d2-b2)=0
<=>(k-1)(k+1)(d-b)(d+b)=0
<=>k=-1;k=1;d=b;d=-b
Xét:
+) d=+b có \(\frac{a}{d}=\frac{c}{b}\) => a=+c
=>d2013=b2013;a2013=c2013;d=-b2013
đến đây hơi kì ,âm rồi
Ta có:
\(a+b=c+d\Rightarrow\left(a+b\right)^2=\left(c+d\right)^2\Rightarrow a^2+2ab+b^2=c^2+2cd+d^2\)
Mà \(a^2+b^2=c^2+d^2\Rightarrow2ab=2cd\Rightarrow a^2-2ab+b^2=c^2-2cd+d^2\Rightarrow\left(a-b\right)^2=\left(c-d\right)^2\)
\(\Rightarrow a-b=c-d\) hoặc \(a-b=d-c\)
*) Với: \(a-b=c-d\) Mà \(a+b=c+d\Rightarrow\left(a+b\right)+\left(a-b\right)=\left(c+d\right)+\left(c-d\right)\Rightarrow2a=2c\Rightarrow a=c\Rightarrow b=d\)
\(\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}\)
*) Với \(a-b=d-c\Rightarrow\left(a-b\right)+\left(a+b\right)=\left(d-c\right)+\left(c+d\right)\Rightarrow2a=2d\Rightarrow a=d\Rightarrow c=b\)
\(\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}\)
Nguyễn Như Nam bạn có thể giảng chi tiết đc ko , thanks vì sự cứu trợ của bạn
Ta có: 5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0
\(\Leftrightarrow\)(4x2 + 8xy + 4y2) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0
\(\Leftrightarrow\)(2x + 2y)2 + (x - 1)2 + (y + 1)2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}\)
Thay x = 1; y = -1; x + y = 0 vào M ta được:
M = 0 + (1 + 2)2008 + ( - 1 + 1)2009
= 0 + 32008 + 0 = 32008