Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\geq \frac{4}{2ab+a^2+b^2}=\frac{4}{a+b)^2}=4(1)\)
Áp dụng BĐT AM-GM:
\(1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}\Rightarrow \frac{3}{2ab}\geq 6(2)\)
\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\geq \frac{(\frac{(a+b)^2}{2})^2}{2}=\frac{1}{8}\) \(\Rightarrow \frac{a^4+b^4}{2}\geq \frac{1}{16}(3)\)
Từ \((1);(2);(3)\Rightarrow P\geq 4+6+\frac{1}{16}=\frac{161}{16}\)
Vậy \(P_{\min}=\frac{161}{16}\). Dấu bằng xảy ra tại $a=b=0,5$
Bài 2:
Áp dụng BĐT Cauchy-Schwarz:
\(2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\geq 2. \frac{4}{x^2+y^2+2xy}=\frac{8}{(x+y)^2}=\frac{9}{2}\)
Áp dụng BĐT AM-GM:
\(\frac{80}{81xy}+5xy\geq 2\sqrt{\frac{80}{81}.5}=\frac{40}{9}\)
\(\frac{4}{3}=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{4}{9}\Rightarrow \frac{1}{81ab}\geq \frac{1}{36}\)
Cộng những BĐT vừa cm được ở trên với nhau:
\(\Rightarrow A\geq \frac{9}{2}+\frac{40}{9}+\frac{1}{36}=\frac{323}{36}\)
Vậy \(A_{\min}=\frac{323}{36}\Leftrightarrow a=b=\frac{2}{3}\)
Theo C.B.S thì
\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\)
\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}\)
Lại theo CBS thì
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}=9\)mà \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\)
\(\Rightarrow\)\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}\)\(\)\(\ge21+9=30\)
vậy Min = 30 khi a = b = c = 1/3
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(a+\dfrac{1}{4a}\text{ ≥}2\sqrt{a.\dfrac{1}{4a}}=2.\dfrac{1}{2}=1\)
\(b+\dfrac{1}{4b}\text{ ≥}2\sqrt{b.\dfrac{1}{4b}}=2.\dfrac{1}{2}=1\)
\(c+\dfrac{1}{4c}\text{ ≥}2\sqrt{c.\dfrac{1}{4c}}=2.\dfrac{1}{2}=1\)
⇒ \(a+b+c+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{ ≥}3\)
⇔ \(a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\text{ ≥}3+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{ ≥ }3+\dfrac{3}{4}.\dfrac{\left(1+1+1\right)^2}{a+b+c}=3+\dfrac{3}{4}.\dfrac{9}{a+b+c}\text{ ≥}3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}=\dfrac{15}{2}\) ⇒ \(A_{MIN}=\dfrac{15}{2}."="\text{⇔}a=b=c=\dfrac{1}{2}\)
\(P=\dfrac{bc}{a\left(b+c\right)}+\dfrac{ca}{b\left(c+a\right)}+\dfrac{ab}{c\left(a+b\right)}\)
\(=\dfrac{b^2c^2}{abc\left(b+c\right)}+\dfrac{c^2a^2}{abc\left(c+a\right)}+\dfrac{a^2b^2}{abc\left(a+b\right)}\)
\(\ge\dfrac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\ge\dfrac{3abc\left(a+b+c\right)}{2abc\left(a+b+c\right)}=\dfrac{3}{2}\)
Dấu = xảy ra khi \(a=b=c\)
Dễ chứng minh được:
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)
Do đó, ta có:
\(\sum\limits_{cyc}=\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\sum_{cyc}\dfrac{a}{a+\sqrt{ac}+\sqrt{ab}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
Vậy: BĐT đã được chứng minh. Đẳng thức xảy ra khi và chỉ khi a=b=c
\(A=3\left(ab+bc+ca\right)+\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{4}\left(b-c\right)^2+\dfrac{1}{8}\left(c-a\right)^2\\ =3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\)
Áp dụng BDT: Cô-si dạng Engel:
\(\Rightarrow A=3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\ge3\left(ab+bc+ca\right)+\dfrac{\left(a-b+b-c+c-a\right)^2}{2+4+8}=3\left(ab+bc+ca\right)\left(1\right)\)
\(\text{Ta lại có: }ab+bc+ac\le a^2+b^2+c^2\\ \Leftrightarrow ab+bc+ac+2\left(ab+bc+ac\right)\le a^2+b^2+c^2+2\left(ab+bc+ac\right)\\ \Leftrightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow A\le9\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}a=b=c\\a+b+c=3\\\dfrac{a-b}{2}+\dfrac{b-c}{4}+\dfrac{c-a}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\Leftrightarrow a=b=c=1\)
Vậy \(A_{Max}=9\) khi \(a=b=c=1\)
Câu 1
\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)
Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)
Câu 2:
\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)
Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24