K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

Sử dụng: 

\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)

Áp dụng vào bài:

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)

\(=\left(a-1+b-2+c-3\right)\)\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)

\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]

<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))

<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

<=>  a = 1 hoặc b = 2 hoặc c = 3.

Không mất tính tổng quát: g/s : a = 1

Khi đó: b + c =5

Ta có:  \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)

\(=\left(b-2+c-3\right).A\)

\(=\left(b+c-5\right).A\)

\(=0.A=0\)

Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)

Tương tự b = 2; c= 3 thì T = 0.

Vậy T = 0.

14 tháng 11 2018

Ta có: a3+b3+c3=3abc <=> a3+b3+c3-3abc=0

<=>\(a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b\right)-3abc=0\)

<=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Mà a+b+c khác 0

=>\(a^2+b^2+c^2-ab-bc-ca=0\)

<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}}a=b=c}\)

=>\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

22 tháng 12 2021

ai giup mik dc ko ak pls mik can gap

 

22 tháng 12 2021

\(a,A=\dfrac{5-3}{5+2}=\dfrac{2}{7}\\ b,B=\dfrac{3x-9+2x+6-3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ c,C=AB=\dfrac{x-3}{x+2}\cdot\dfrac{2}{x-3}=\dfrac{2}{x+2}\\ C=-\dfrac{1}{3}\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(tm\right)\)

3 tháng 10 2017

Bài 1 câu g bạn kia làm sai mình sửa lại nhá

\(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2\right)-12c^2\)

\(=3\left(a-b\right)^2-12c^2\)

\(=3\left[\left(a-b\right)^2-4c^2\right]\)

\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)

3 tháng 10 2017

Để mình làm tiếp cho :))

Bài 2 :

Câu a : \(37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5\)

\(=\left(37,5.8,5+1,5.37,5\right)-\left(7,5.3,4+6,6.7,5\right)\)

\(=37,5\left(8,5+1,5\right)-7,5\left(3,4+6,6\right)\)

\(=37,5.10-7,5.10\)

\(=10.30=300\)

Câu b : \(35^2+40^2-25^2+80.35\)

\(=\left(35^2+80.35+40^2\right)-25^2\)

\(=\left(30+45\right)^2-25^2\)

\(=75^2-25^2\)

\(=\left(75+25\right)\left(75-25\right)\)

\(=100.50=5000\)

Bài 3 :

Câu a : \(x^3-\dfrac{1}{9}x=0\)

\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{9}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{3}\end{matrix}\right.\)

Câu b : \(2x-2y-x^2+2xy-y^2=0\)

\(\Leftrightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\2-x+y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x+y=2\Rightarrow x=2-y\end{matrix}\right.\)

Câu c :

\(x\left(x-3\right)+x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

\(x^2\left(x-3\right)+27-9x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-9\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\pm3\end{matrix}\right.\)

Bài 4 :

Câu a :

\(x^2-4x+3\)

\(=x^2-x-3x+3\)

\(=\left(x^2-x\right)-\left(3x-3\right)\)

\(=x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-1\right)\left(x-3\right)\)

Câu b :

\(x^2+x-6\)

\(=x^2-2x+3x-6\)

\(=x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(x+3\right)\)

Câu c :

\(x^2-5x+6\)

\(=x^2-2x-3x+6\)

\(=\left(x^2-2x\right)-\left(3x-6\right)\)

\(=x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(x-3\right)\)

Câu d :

\(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)