Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(\Leftrightarrow3x-40=2\)
=>3x=42
hay x=14
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>-2x+8=0
=>-2x=-8
hay x=4
c: \(x\left(x-2\right)+\left(x-2\right)=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
d: \(5x\left(x-3\right)-x+3=0\)
=>5x(x-3)-(x-3)=0
=>(x-3)(5x-1)=0
=>x=3 hoặc x=1/5
e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)
\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)
=>-14x=28
hay x=-2
f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)
=>x+2=0
hay x=-2
13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.
Đề này chép có đúng không thế bạn? Chứ mình thấy hơi sai sai.
Bạn cần viết cụ thể hơn: Số nguyên dương $x,y$ và số nguyên tố $p$ thỏa mãn. $p^x-y^4=4$
Lời giải:
Nếu $p=2$ thì: $y^4=2^x-4\vdots 2$
$\Rightarrow y\vdots 2$
$\Rightarrow 2^x-4=y^4\vdots 8$
$\Rightarrow 2^x$ không chia hết cho $8$
$\Rightarrow x< 3$. Thử $x=1; 2$ ta không thu được $y$ nguyên dương thỏa mãn (loại)
Nếu $p\neq 2$ ($p$ lẻ)
$p^x=y^4+4=(y^2+2)^2-(2y)^2=(y^2+2-2y)(y^2+2+2y)$
Do đó tồn tại $m,n\in\mathbb{N}$ sao cho:
$y^2+2-2y=p^m; y^2+2+2y=p^n$ và $m+n=x; m< n$
$\Rightarrow 4y=p^n-p^m$
Giả sử $m,n\geq 1$ thì $4y\vdots p\Rightarrow y\vdots p$ (do $p$ lẻ)
$\Rightarrow 4=p^x-y^4\vdots p$ (vô lý)
Do đó $m=0$. Khi đó: $y^2+2-2y=p^0=1$
$\Leftrightarrow y^2-2y+1=0\Rightarrow y=1$
$\Rightarrow p^x=5\Rightarrow p=5; x=1$
Vậy........