K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

dấu <=> thứ 4 em làm nhầm rồi, 4x - 6x = - 2x chứ! Rồi tiếp theo em nên đưa về hằng đẳng thức chứ giải vậy ko đc đâu.

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 1:

\(x^2+y^2-2x-4y+5=0\)

\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)

Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$

$\Rightarrow x=1; y=2$

Vậy...........

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 2:

Ta có:

\(a(a-b)+b(b-c)+c(c-a)=0\)

\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)

\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

Lập luận tương tự bài 1, ta suy ra :

\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)

Khi đó, thay $b=c=a$ ta có:

\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)

\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)

\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)

Vậy $P_{\min}=\frac{17}{4}$

Giá trị này đạt được tại $b=c=a=\frac{1}{2}$

2 tháng 8 2017

6,

=a4 [-(a-b)-(c-a)] + [b4(c-a)+c4(a-b)]

=rồi nhóm hạng tử chung lại

=và sau đó tách ra bằng hằng đẳng thức 

kết quả =(a-b)(c-a)(c-b)(a2+b2+c2+ab+bc+ca)

              Bài này khá dài nên mk nhác viết , bn cố gắng làm bài nhé ! 

1. Dùng phương pháp hệ số bất định : a) 4x4 + 4x3 + 5x2 + 2x + 1 ; b) x4 - 7x3 + 14x2 - 7x + 1 ; c) x4 - 8x + 63 ; d) (x + 1)4 + (x2 + x + 1)2. 2. a) x8 + 14x4 + 1 ; b) x8 + 98x4 + 1. Phân tích các đa thức sau thành nhân tử (từ bài 7 đến bài 16) : 1. a) 6x2 – 11x +...
Đọc tiếp

1. Dùng phương pháp hệ số bất định :

a) 4x4 + 4x3 + 5x2 + 2x + 1 ; b) x4 - 7x3 + 14x2 - 7x + 1 ;

c) x4 - 8x + 63 ; d) (x + 1)4 + (x2 + x + 1)2.

2. a) x8 + 14x4 + 1 ; b) x8 + 98x4 + 1.

Phân tích các đa thức sau thành nhân tử (từ bài 7 đến bài 16) :

1. a) 6x2 – 11x + 3 ; b) 2x2 + 3x – 27 ; c) x2 – 10x + 24 ;

d) 49x2 + 28x – 5 ; e) 2x2 – 5xy – 3y2.

2. a) x3 – 2x + 3 ; b) x3 + 7x – 6 ; c) x3 – 5x + 8x – 4 ;

d) x3 – 9x2 + 6x + 16 ; e) x3 + 9x2 + 6x – 16 ; g) x3 – x2 + x – 2 ;

h) x3 + 6x2 – x – 30 ; i) x3 – 7x – 6 (giải bằng nhiều cách).

3. a) 27x3 + 27x +18x + 4 ; b) 2x3 + x2 +5x + 3 ; c) (x2 – 3)2 + 16.

4. a) (x2 + x)2 - 2(x2 + x) - 15 ; b) x2 + 2xy + y2 - x - y - 12 ;

c) (x2 + x + 1)(x2 + x + 2) - 12 ;

5. a) (x + a)(x + 2a)(x + 3a)(x + 4a) + a4 ;

b) (x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2 ;

c) 2(x4 + y4 + z4) - (x2 + y2 + z2)2 - 2(x2 + y2 + z2)(x + y + z)2 + (x + y + z)4.

6. (a + b + c)3 - 4(a3 + b3 + c3) - 12abc bằng cách đổi biến : đặt a + b = m và a - b = n.

7. a) 4x4 - 32x2 + 1 ; b) x6 + 27 ;

c) 3(x4 + x+2+ + 1) - (x2 + x + 1)2 ; d) (2x2 - 4)2 + 9.

8. a) 4x4 + 1 ; b) 4x4 + y4 ; c) x4 + 324.

9. a) x5 + x4 + 1 ; b) x5 + x + 1 ; c) x8 + x7 + 1 ;

d) x5 - x4 - 1 ; e) x7 + x5 + 1 ; g) x8 + x4 + 1.

10. a) a6 + a4 + a2b2 + b4 - b6 ; b) x3 + 3xy + y3 - 1.

Help me!!!!!!!!!!!!!!!!!

1

Bài 1: 

a: \(6x^2-11x+3\)

\(=6x^2-9x-2x+3\)

\(=3x\left(2x-3\right)-\left(2x-3\right)\)

\(=\left(2x-3\right)\left(3x-1\right)\)

b: \(2x^2+3x-27\)

\(=2x^2+9x-6x-27\)

\(=x\left(2x+9\right)-3\left(2x+9\right)\)

\(=\left(2x+9\right)\left(x-3\right)\)

c: \(x^2-10x+24\)

\(=x^2-4x-6x+24\)

\(=x\left(x-4\right)-6\left(x-4\right)\)

\(=\left(x-4\right)\left(x-6\right)\)

d: \(49x^2+28x-5\)

\(=49x^2+28x+4-9\)

\(=\left(7x+2\right)^2-9\)

\(=\left(7x-1\right)\left(7x+5\right)\)

e: \(2x^2-5xy-3y^2\)

\(=2x^2-6xy+xy-3y^2\)

\(=2x\left(x-3y\right)+y\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x+y\right)\)