Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta tìm đc A(2;1) và B(-4;4)
Để M .... AMB lơn nhất thì M phải là tiếp diem cua dt (d'):y=ax+b(a khác 0) dong thoi (d')phải song song vói (d)
+(d')//(d)<=>a=-1/2 và b khác 2
+(d') tiếp xúc (P)=>1/4 x^2=-1/2 x +b<=>x^2 +2x-4b=0(1)
d' txuc P thì (1)phải có nghiem kép=>đenta =0=>b=-1/4 thay vao (1)thì đc x1=x2=-1=>y1=y2=1/4
vay M(-1;1/4)thi dien h tgiac AMB lon nhat
Bài 1
***\(y=-x\)
Cho \(x=0\Rightarrow y=0\)
\(x=-1\Rightarrow y=1\)
Đồ thị hàm số \(y=-x\)là đường thẳng đi qua hai điểm \(\left(0,0\right);\left(-1;1\right)\)
*** \(y=\frac{1}{2}x\)
Cho \(x=0\Rightarrow y=0\)
\(x=2\Rightarrow y=1\)
Đồ thị hàm số \(y=\frac{1}{2}x\)là đường thẳng đi qua 2 điểm \(\left(0;0\right)\left(2;1\right)\)
*** \(y=2x+1\)
Cho \(x=0\Rightarrow y=1\)
\(y=-1\Rightarrow x=-1\)
Đồ thị hàm số \(y=2x+1\)là đường thẳng đi qua 2 điểm \(\left(0;1\right)\left(-1;-1\right)\)
Bài 2
a, \(P=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{x-16}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+4\right)-4\left(\sqrt{x}-4\right)-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x+4\sqrt{x}-4\sqrt{x}+16-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x-8\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x-4\sqrt{x}-4\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)-4\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}-4}{\sqrt{x}+4}\)
b, Với x = 25
\(\Rightarrow P=\frac{\sqrt{25}-4}{\sqrt{25}+4}=\frac{5-4}{5+4}=\frac{1}{9}\)
c, \(P=\frac{\sqrt{x}-4}{\sqrt{x}+4}=1-\frac{8}{\sqrt{x}+4}\)
Để P thuộc Z thì \(\sqrt{x}+4\inƯ\left(8\right)=\left(-8;-4-2;-1;1;2;4;8\right)\)
\(\sqrt{x}+4=-8\Rightarrow\sqrt{x}=-12VN\)
\(\sqrt{x}+4=-4\Rightarrow\sqrt{x}=-8VN\)
\(\sqrt{x}+4=-2\Rightarrow\sqrt{x}=-6VN\)
\(\sqrt{x}+4=-1\Rightarrow\sqrt{x}=-5VN\)
\(\sqrt{x}+4=1\Rightarrow\sqrt{x}=-3VN\)
\(\sqrt{x}+4=2\Rightarrow\sqrt{x}=-2VN\)
\(\sqrt{x}+4=4\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}+4=8\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
d, Để P nhỏ nhất thì \(\frac{8}{\sqrt{x}+4}\)lớn nhất
\(\frac{8}{\sqrt{x}+4}\)lớn nhất khi \(\sqrt{x}+4\)nhỏ nhất '
\(\sqrt{x}+4\)nhỏ nhất = 4 khi x = 0
vậy x=0 thì P đạt giá trị nhỉ nhất min p = -1
a: Phương trình hoành độ giao điểm là:
\(-x^2-mx-2=0\)
\(\Leftrightarrow x^2+mx+2=0\)
\(\Delta=m^2-8\)
Để (P) cắt (d) tại 1 điểm duy nhất thì Δ=0
hay \(m\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
b: Thay x=-2 vào (P), ta được:
\(y=-\left(-2\right)^2=-4\)
hay m=-4
chịu thui mk mới học lớp 6
à
nên ko làm được bài lớp 9 đâu
hihi tặng bn mấy ảnh conan nè
thick ko nhé bn
hihi tặng các bn đó
Độ dài là min khi (nếu có thể) độ dài đó là 0.
Nhận thấy điều này xảy ra được vì (P) và (d) cắt nhau tại \(A\left(1;1\right)\) và \(B\) trùng với \(A\).
Giải:
\(!AB!=\sqrt{\left(x_a-x_b\right)^2+\left(y_a+y_b\right)^2}\)\(=\sqrt{\left(x_a-x_b\right)^2+\left(x_a^2-2x_b+1\right)^2}=D\)
Bài toán trở thành: tìm giá trị xa=a và xb=b sao cho D đạt GTNN
Hiển nhiên \(D\ge0\)đẳng thức xẩy ra khi \(\hept{\begin{cases}a-b=0\\a^2-2b+1=0\end{cases}}\)\(\left(b-1\right)^2=0\Rightarrow b=1\) Nghiệm duy nhất a=b=1
KL
A(1,1) trùng B(1,1)