Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(B=\dfrac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(=\dfrac{2^{10}.\left(13+65\right)}{2^8.2^3.13}\)
\(=\dfrac{2^{10}.78}{2^{11}.13}\)\(=\dfrac{1.6}{2.1}=\dfrac{1.3}{1.1}=3\)
b: \(=\dfrac{2^{20}\cdot3^2+2^{54}}{2^{18}\cdot5^2}=\dfrac{2^{20}\left(3^2+2^{32}\right)}{2^{18}\cdot5^2}=\dfrac{2^2\left(3^2+2^{32}\right)}{25}\)
c: \(=\dfrac{2^9\cdot3^6\cdot3^6\cdot2^2}{2^8\cdot3^{12}}=\dfrac{2^{11}}{2^8}=8\)
d: \(=\dfrac{2^{12}\cdot3^4\cdot3^{10}}{2^{12}\cdot3^{12}}=9\)
a) \(\dfrac{x}{48}=-\dfrac{4}{7}\Rightarrow x=-\dfrac{192}{7}\)
b) \(\left(x+\dfrac{4}{5}\right)-\dfrac{2}{5}=\dfrac{3}{5}\Rightarrow x+\dfrac{4}{5}=1\)
\(\Rightarrow x=\dfrac{1}{5}\)
c) \(2\left|x-1\right|^2=72\Rightarrow\left|x-1\right|^2=36\)
\(\Rightarrow\left|x-1\right|=6\)
TH1: x - 1 = -6 => x = -5
TH2: x - 1 = 6 => x = 7
e) \(\dfrac{x}{2,5}=\dfrac{4}{5}\Rightarrow x=2\)
f) | x - 2 | = 1 + 4 = 5
TH1: x - 2 = -5 => x = -3
TH2: x - 2 = 5 => x = 7
a) \(\dfrac{x}{48}=\dfrac{-4}{7}\)
⇒ x.7=48.(-4)
7x = -192
x=\(\dfrac{-192}{7}\) Vậy x=\(\dfrac{-192}{7}\)
b) \(\left(x+\dfrac{4}{5}\right)-\dfrac{2}{5}=\dfrac{3}{5}\)
\(\left(x+\dfrac{4}{5}\right)=\dfrac{3}{5}+\dfrac{2}{5}\)
\(x+\dfrac{4}{5}=1\)
\(x=1-\dfrac{4}{5}\)
\(x=\dfrac{1}{5}\)
c) chưa từng gặp dạng với giá trị tuyệt đối sory
d) \(\dfrac{1}{6}x-\dfrac{2}{3}=2\)
\(\dfrac{1}{6}x=2+\dfrac{2}{3}\)
\(\dfrac{1}{6}x=\dfrac{8}{3}\)
\(x=\dfrac{8}{3}:\dfrac{1}{6}\)
\(x=16\)
e) \(\dfrac{x}{2,5}=\dfrac{4}{5}\)
=> x.5 = 4.2,5
5x=10
x=10:5
x=2
f) |x-2|-4=1
|x-2|=1+4
|x-2|=5
=>\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=5+2\\x=-5+2\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
đôi khi cũng có sai sót , hãy xem lại thật kĩ
a: \(\Leftrightarrow x^3=-216\)
=>x=-6
b: \(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
=>x=8; y=10; z=7
Theo đề : \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và \(x^2+y^2+2z^2=108\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\left(\dfrac{z}{4}\right)^2\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=2.\left(\dfrac{z}{4}\right)^2=>\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}=\dfrac{x^2+y^2+2z^2}{4+9+32}=\dfrac{108}{45}=\dfrac{12}{5}\)
Với \(\dfrac{x^2}{2}=\dfrac{12}{5}\Rightarrow x^2=\dfrac{12}{5}.2=\dfrac{24}{5}\Rightarrow x=\dfrac{2\sqrt{30}}{5}\)
\(\dfrac{y^2}{3}=\dfrac{12}{5}\Rightarrow y^2=\dfrac{12}{5}.3=\dfrac{36}{5}\Rightarrow y=\dfrac{6\sqrt{5}}{5}\)
\(\dfrac{2z^2}{4}=\dfrac{12}{5}\Rightarrow2z^2=\dfrac{12}{5}.4=\dfrac{48}{5}\Rightarrow z^2=\dfrac{24}{5}=>\dfrac{2\sqrt{30}}{5}\)
theo bài ra ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
dựa vào tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\ =\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\\ =\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{108}{27}=4\)=>x=4.2=8
=>y=4.3=12 =>z=4.4=16 vậy x,y,z lần lượt là 8;12;16
=8
\(\dfrac{72^3.54^2}{108^4}\)
\(=\dfrac{18^3.4^3.18^2.3^2}{18^4.6^4}\)
\(=\dfrac{18^5.2^6.3^2}{18^4.2^4.3^4}\)
\(=\dfrac{18.2^2}{3^2}\)
\(=\dfrac{9.2.2^2}{9}\)
\(=2^3=8\)