Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1x2x3 + 2x3x4 +…+ 100x101x102
Nhân A với 4 ta có :
A x 4 = 1x2x3x4 + 2x3x4x 4 + 3x4x5x4 +…+100x101x102x4
A x 4 = 1x2x3x4 + 2x3x4x(5-1) + 3x4x5x(6-2) + ... + 100x101x102x(103 - 99)
A x 4 = 1x2x3x4 + 2x3x4x5 - 1x2x3x4 + 3x4x5x6 - 2x3x4x5 + ... + 100x101x102x103 - 99x100x1001x102
Sau khi cộng - trừ giản ước ta có : A x 4 = 100x101x102x103
A = 100 x101x102x103 : 4 = 26527650
\(A=\frac{1X2X3+2X4X6+4X8X12+8X16X24}{2X3X4+4X6X8+8X12X16+8X24X32}\)
\(A=\frac{1+1+1+1}{4+4+4+2}\)
\(A=\frac{4}{14}\)
CHÚC BẠN HỌC GIỎI !
A =1x2x3 + 2x3x4 +3x4x5+....+ 2010 x2011 x 2012
4A =1x2x3x4 + 2x3x4x4 +3x4x5x4+....+ 2010 x2011 x 2012x4
4A =1x2x3x4 + 2x3x4x(5+1) +3x4x5x(6-2)+....+ 2010 x2011 x 2012x(2013-2009)
4A =1x2x3x4 + 2x3x4x5-1x2x3x4+3x4x5x6-2x3x4x5+....+ 2010 x2011 x 2012x2013-2009x2010x2011x2012
4A = 2010 x2011 x 2012x2013
A = \(\frac{2010\times2011\times2012\times2013}{4}\)
Đặt \(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)
\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{30\times31\times32}\)
\(=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+\left(\frac{1}{3\times4}-\frac{1}{4\times5}\right)+...+\left(\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\)
\(=\frac{1}{1\times2}-\frac{1}{31\times32}\)
\(=\frac{1}{2}-\frac{1}{992}\)
\(=\frac{495}{992}\)
\(\Rightarrow A=\frac{495}{992}\div2=\frac{495}{1984}\)
\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{2}\times\frac{990}{1984}\)
\(=\frac{990}{3968}=\frac{495}{1984}\)
Ta có:
\(F=1.2.3+2.3.4+...+98.99.100\)
\(\Rightarrow4F=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+....+98.99.100.\left(101-97\right)\)
\(\Rightarrow4F=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100\)
\(\Rightarrow4F=98.99.100.101\Leftrightarrow F=\frac{98.99.100.101}{4}=24497550\)
S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}\)
S = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{2015-2013}{2013.2014.2015}\right)\)
S = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{2015}{2013.2014.2015}-\frac{2013}{2013.2014.2015}\right)\)
S = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)
S = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2014.2015}\right)\)
S = \(\frac{1}{2}.\frac{2029104}{4058210}\)
S = \(\frac{1014552}{4058210}\)
A=1x2x3 + 2x3x4 +…+ 100x101x102
Nhân A với 4 ta có :
A x 4 = 1x2x3x4 + 2x3x4x 4 + 3x4x5x4 +…+100x101x102x4
A x 4 = 1x2x3x4 + 2x3x4x(5-1) + 3x4x5x(6-2) + ... + 100x101x102x(103 - 99)
A x 4 = 1x2x3x4 + 2x3x4x5 - 1x2x3x4 + 3x4x5x6 - 2x3x4x5 + ... + 100x101x102x103 - 99x100x1001x102
Sau khi cộng - trừ giản ước ta có : A x 4 = 100x101x102x103
A = 100 x101x102x103 : 4 = 26527650
26527650