K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để A nguyên thì x^2 chia hết cho x+1

=>x^2-1+1 chia hết cho x+1

=>\(x+1\in\left\{1;-1\right\}\)

=>\(x\in\left\{0;-2\right\}\)

29 tháng 12 2021

b: \(B=\dfrac{2x-8+x+20}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x+12}{\left(x+4\right)\left(x-4\right)}=\dfrac{3}{x-4}\)

14 tháng 12 2022

\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{x^2\left(2-x\right)}{4x\left(x-3\right)}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{4\left(x-3\right)}\)

\(=\dfrac{-4x^2-8x}{x+2}\cdot\dfrac{-x}{4\left(x-3\right)}=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)}\cdot\dfrac{-x}{4\left(x-3\right)}\)

\(=\dfrac{x^2}{x-3}\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2019

Lời giải:
a)

ĐKXĐ: \(x\neq 0; x\neq - 1\)

\(M=\frac{(x+2)(x+1)+2.3x-3.3x(x+1)}{3x(x+1)}:\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)

\(=\frac{-8x^2+2}{3x(x+1)}.\frac{x+1}{2-4x}-\frac{3x-x^2+1}{3x}=\frac{2(1-4x^2)}{3x(2-4x)}-\frac{3x-x^2+1}{3x}\)

\(=\frac{2(1-2x)(1+2x)}{6x(1-2x)}-\frac{3x-x^2+1}{3x}=\frac{1+2x}{3x}-\frac{3x-x^2+1}{3x}=\frac{x^2-x}{3x}=\frac{x-1}{3}\)

b)

Khi $x=2006\Rightarrow M=\frac{2006-1}{3}=\frac{2005}{3}$

c)

\(M< 0\Leftrightarrow \frac{x-1}{3}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ suy ra $x< 1; x\neq 0; x\neq -1$

d)

Để \(\frac{1}{M}=\frac{3}{x-1}\in\mathbb{Z}\) thì \(3\vdots x-1\)

\(\Rightarrow x-1\in\left\{\pm 1;\pm 3\right\}\)

\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)

Kết hợp đkxđ suy ra $x\in\left\{-2;2;4\right\}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2019

Lời giải:
a)

ĐKXĐ: \(x\neq 0; x\neq - 1\)

\(M=\frac{(x+2)(x+1)+2.3x-3.3x(x+1)}{3x(x+1)}:\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)

\(=\frac{-8x^2+2}{3x(x+1)}.\frac{x+1}{2-4x}-\frac{3x-x^2+1}{3x}=\frac{2(1-4x^2)}{3x(2-4x)}-\frac{3x-x^2+1}{3x}\)

\(=\frac{2(1-2x)(1+2x)}{6x(1-2x)}-\frac{3x-x^2+1}{3x}=\frac{1+2x}{3x}-\frac{3x-x^2+1}{3x}=\frac{x^2-x}{3x}=\frac{x-1}{3}\)

b)

Khi $x=2006\Rightarrow M=\frac{2006-1}{3}=\frac{2005}{3}$

c)

\(M< 0\Leftrightarrow \frac{x-1}{3}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ suy ra $x< 1; x\neq 0; x\neq -1$

d)

Để \(\frac{1}{M}=\frac{3}{x-1}\in\mathbb{Z}\) thì \(3\vdots x-1\)

\(\Rightarrow x-1\in\left\{\pm 1;\pm 3\right\}\)

\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)

Kết hợp đkxđ suy ra $x\in\left\{-2;2;4\right\}$

1 tháng 12 2021

\(a,P=\dfrac{2x^2+2x+2+2x-1+x^2+6x+2}{\left(x-1\right)\left(x^2+x+1\right)}\\ P=\dfrac{3x^2+10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

23 tháng 12 2021

THAM KHẢO

undefined

23 tháng 12 2021

\(P=\dfrac{x-5}{x-4}:\dfrac{x-5}{2x}=\dfrac{2x}{x-4}\)

\(\Rightarrow\)\(\dfrac{2x}{x-4}\in Z\)

\(\Rightarrow\)\(\dfrac{2\left(x-4\right)+8}{x-4}\in Z\)

\(\Rightarrow\)\(2+\dfrac{8}{x-4}\in Z\Rightarrow\)\(\dfrac{8}{x-4}\in Z\Rightarrow x-4\inƯ\left(8\right)=\left\{...\right\}\)

Bạn làm tiếp nhé!

a: ĐKXĐ: x<>1

Sửa đề: \(C=\dfrac{5x+1}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{2}{x-1}\)

\(=\dfrac{5x+1+\left(2x-1\right)\left(x-1\right)+2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2x^2+7x+3+2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{4x^2+4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{4}{x-1}\)

b: |x|=4

=>x=4 hoặc x=-4

Khi x=4 thì \(C=\dfrac{4}{4-1}=\dfrac{4}{3}\)

Khi x=-4 thì \(C=\dfrac{4}{-4-1}=\dfrac{4}{-5}=\dfrac{-4}{5}\)

c: C>0

=>4/x-1>0

=>x-1>0

=>x>1

d: C nguyên

=>x-1 thuộc {1;-1;2;-2;4;-4}

=>x thuộc {2;0;3;-1;5;-3}

2 tháng 11 2023

Trong xu thế hội nhập hiện nay, hợp tác quốc tế là vấn đề quan trọng và tất yếu của mỗi quốc gia, dân tộc trên thế giới. Trong những năm gần đây, Việt Nam đã và đang trở thành một trong những điển hình về hợp tác quốc tế

a, từ nhận định trên em hãy cho biết hợp tác là gì? cơ sở và nguyên tắc của đang và nhà nước ta?

b, nêu 1 số thành quả hợp tác giữa các nước ta và các nước trên thế giới? từ đó em hãy cho biết hộc sinh hiên nay cần phải làm gì để rèn luyện tinh thần hợp tác

9 tháng 12 2017

a, Để B xác định

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\4-x^2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

\(b,B=\dfrac{3}{x-2}+\dfrac{-2}{x+2}-\dfrac{x-14}{4-x^2}\)

\(=\dfrac{3\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{-2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x-14}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{3x+6-2x+4+x-14}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

c, Đẻ B có giá trị nguyên

\(\Leftrightarrow2⋮x+2\Leftrightarrow x+2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Ta có bẳng sau:

\(x+2\) 1 -1 2 -2
2 -1 -3 0 -4

Vậy \(x\in\left\{-1;-3;0;-4\right\}\) thì B có giá trị nguyên

21 tháng 1 2021

undefined

21 tháng 1 2021

Bổ sung phần c và d luôn:

c, C = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)

\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6

\(\Leftrightarrow\) x2 = 11

\(\Leftrightarrow\) x2 - 11 = 0

\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)

d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)

C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))

\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)\(\in\) Ư(5)

Xét các TH:

4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)

Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z

Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)

18 tháng 6 2021

a) đk: x khác 0;1

 \(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left[\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)

\(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b) Để \(\left|2x-5\right|=3\)

<=>  \(\left[{}\begin{matrix}2x-5=3< =>2x=8< =>x=4\left(c\right)\\2x-5=-3< =>2x=2< =>x=1\left(l\right)\end{matrix}\right.\)

Thay x = 4 vào A, ta có: 

\(A=\dfrac{4^2}{4-1}=\dfrac{16}{3}\)

c) Để A = 4

<=> \(\dfrac{x^2}{x-1}=4\)

<=> \(\dfrac{x^2}{x-1}-4=0< =>\dfrac{x^2-4x+4}{x-1}=0\)

<=> \(\left(x-2\right)^2=0\)

<=> x = 2 (T/m)

d) Để A < 2

<=> \(\dfrac{x^2}{x-1}< 2< =>\dfrac{x^2}{x-1}-2< 0< =>\dfrac{x^2-2x+2}{x-1}< 0\)

<=> \(\dfrac{\left(x-1\right)^2+1}{x-1}< 0\)

Mà \(\left(x-1\right)^2+1>0\)

<=> x - 1 < 0 <=> x < 1

KHĐK: x < 1 ( x khác 0)

 

18 tháng 6 2021

e) Để A thuộc Z

<=> \(\dfrac{x^2}{x-1}\in Z\)

<=> \(x^2⋮x-1\)

<=> \(x^2-x\left(x-1\right)-\left(x-1\right)⋮x-1\) 

<=> \(1⋮x-1\)

Ta có bảng: 

x-11-1
x20
 T/m

T/m

KL: Để A thuộc Z <=> \(x\in\left\{2;0\right\}\) 

f) Để A thuộc N <=> \(x\in\left\{2;0\right\}\)