Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
\(3n-3+5⋮n-1\)
\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)
có 3(n-1) chia hết cho n-1
\(\Rightarrow5⋮n-1\)
=> n-1 thuộc ước của 5
tức là:
n-1=5
n-1=-5
n-1=1
n-1=-1
trả lời...................................
đúng nhé..............................
hk tốt.........................................
1)Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4
= 3 ( n - 1 ) + 7
Vì ( n - 1 ) chia hết cho ( n -1 ) =>3 ( n - 1 ) chia hết cho ( n -1 )
Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 ) thì 7 chia hết cho n - 1
Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 }
Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK )
Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK )
Vậy n = 8 hoặc n = 2 là giá trị cần tìm
\(3n+1⋮11-n\)
\(=>3n+1⋮-\left(n-11\right)\)
\(=>3n-33+34⋮n-11\)
\(=>34⋮n-11\)
\(=>n-11\inƯ\left(34\right)\)
Nên ta có bảng sau :
Tự lập bảng nhé bạn :P
a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:
\(n-2\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(n\) | \(3\) | \(4\) | \(5\) | \(8\) |
Vậy \(n\in\left\{3;4;5;8\right\}\)
b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:
\(n-1\) | \(1\) | \(2\) | \(4\) |
\(n\) | \(2\) | \(3\) | \(5\) |
Vậy \(n\in\left\{2;3;5\right\}\)
câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html
câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html
Lời giải:
$n^3+3n+1\vdots n+1$
$\Rightarrow (n^3+1)+3n\vdots n+1$
$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$
$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn)
$\Rightarrow n\in \left\{0; 2\right\}$