Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(n+4⋮n+1\Leftrightarrow\left(n+1\right)+3⋮n+1\)
\(3⋮n+1\)(vì n+1 chia hết cho n+1)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
\(n+1=1\Rightarrow n=0\)
\(n+1=3\Rightarrow n=2\)
Vậy \(n\in\left\{0;2\right\}\)
b)
\(2n+3⋮n+1\Leftrightarrow2\left(n+1\right)+1⋮n+1\)
\(\Rightarrow1⋮n+1\)(vì 2(n+1) chia hết cho n+1)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\)
\(\Rightarrow n+1=1\Rightarrow n=0\)
Vậy \(n=0\)
câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html
câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html
a, n + 4 ⋮ n
Ta có : n ⋮ n
=> Để n + 4 ⋮ thì 4 phải chia hết chọn :
Mà n ∈ N => n ∈ { 1 ; 2 ; 4 }
Vậy với n ∈ { 1 ; 2 ; 4 } thì n + 4 ⋮ n .
b, 3n + 7 ⋮ n
Để 3n + 7 ⋮ n thì :
7 ⋮ n ( vì 3n ⋮ n ) mà n ∈ N
n ∈ { 1 ; 7 }
Vậy với n ∈ { 1 ; 7} thì 3n + 7 ⋮ n .
c, 27 - 5n ⋮ n
Để 27 - 5n ⋮ n thì :
27 ⋮ n ( vì 5n ⋮ n ) mà n ∈ N .
n ∈ { 1 ; 3 ; 9 ; 27 }
Vậy với n ∈ { 1 ; 3 ; 9 ; 27 } thì 27 - 5n ⋮ n .
Để 2n + 13 chia hết cho n + 3
thì \(\frac{2}{n+3}\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)ĐXXĐ \(n\ne-3\)
hay ta có bảng
n+ 3 - 7 -1 1 7
n -10 -4 -2 4
Vậy n \(\in\left\{-10;-4;-2;4\right\}\)
Ta có :n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n-4 chia hết cho n-2
=> 10-2n-(2n-4) chia hết cho n-2 => 10-2n-2n+4 chia hết cho n-2 => 14 chia hết cho n-2
Còn lại tự tìm
\(10-2n⋮n-2\)
\(\Rightarrow6-2n-4⋮n-2\)
\(\Rightarrow6-2(n-2)⋮n-2\)
\(\Rightarrow6⋮n-2\)
\(\Rightarrow n-2\inƯ(6)=\left\{1;2;3;6\right\}\)
\(\text{Ta có bảng sau :}\)
\(n-2\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(n\) | \(3\) | \(4\) | \(5\) | \(8\) |
2n + 15 chia hết cho n + 3
=> 2n + 6 + 9 chia hết cho n + 3
=> 2(n + 3) + 9 chia hết cho n + 3
=> 9 chia hết cho n + 3 (Vì 2(n + 3) chia hết cho n + 3)
=> n + 3 thuộc {3; 9} (Vì n thuộc N => n + 3 > 3)
=> n thuộc {0; 6}
Ta có:
\(\frac{2n+15}{n+3}=\frac{2n+6+9}{n+3}=\frac{2\left(n+3\right)+9}{n+3}=\frac{n+3}{n+3}+\frac{9}{n+3}=1+\frac{9}{n+3}\)
Suy ra n+3\(\in\)Ư(9)
Ư(9)là:[1,-1,3,-3,9,-9]
Ta có bảng sau:
n+3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | -2 | -4 | 0 | -6 | 6 | -12 |
Vậy n=-2;-4;0;-6;6;-12
MK làm phần c) còn các phần khác bn tự làm nha:
6n+4 \(⋮\)2n+1
+)Ta có:2n+1\(⋮\)2n+1
=>3.(2n+1)\(⋮\)2n+1
=>6n+3\(⋮\)2n+1(1)
+)Theo bài ta có:6n+4\(⋮\)2n+1(2)
+)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1
=>6n+4-6n-3\(⋮\)2n+1
=>1\(⋮\)2n+1
=>2n+1\(\in\)Ư(1)=1
=>2n+1=1
+)2n+1=1
2n =1-1
2n =0
n =0:2
n =0\(\in\)Z
Vậy n=0
Chúc bn học tốt
Bài giải
a) Ta có n + 5 \(⋮\)n - 1 (n \(\inℤ\))
=> n - 1 + 6 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
Nên 6 \(⋮\)n - 1
Tự làm tiếp.
b) Ta có 2n - 4 \(⋮\)n + 2
=> 2(n + 2) - 8 \(⋮\)n + 2
Vì 2(n + 2) \(⋮\)n + 2
Nên 8 \(⋮\)n + 2
Tự làm tiếp.
c) Ta có 6n + 4 \(⋮\)2n + 1
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 6n + 4 - (6n + 3) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
Tự làm tiếp
d) Ta có 3 - 2n \(⋮\)n + 1
=> -2n + 3 \(⋮\)n + 1
=> -2n - 2 + 5 \(⋮\)n + 1
=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)
Vì -2(n + 1) \(⋮\)n + 1
Nên 5 \(⋮\)n + 1
Tự làm tiếp.
a)
(n + 4 ) chia hết ( n + 1 )
(n + 1 ) +3 chia hết ( n + 1 )
vì n+1 luôn chia hết cho n+1 nên để (n + 1 ) +3 chia hết ( n + 1 ) thì 3 cũng phải chia hết cho n+1
=> n+1 thuộc Ư( 3 )
b)
tương tự phần a
cho mk nha
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)