Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 4n - 3 chia hết cho 2n + 1
4n + 2 - 5 chia hết cho 2n + 1
5 chia hết cho 2n + 1
2n + 1 thuộc U(5) = {-5;-1;1;5}
n thuộc {-3 ; -1 ; 0 ; 2}
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
Nhân n với 3
=>16-3n +3n+6
=>22 chia hết cho n+2
=> n = ...( tự tìm)
a . Ta có : \(n+10⋮n+1\)
\(n+1+9⋮n+1\)
mà\(n+1⋮n+1\)
\(\Rightarrow9⋮n+1\)
\(\Rightarrow n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\)
Ta có bảng sau :
n +1 | 1 | 3 | 9 |
n | 0 | 2 | 8 |
n+10 n+1 1 n+1 9 để n+10 chia hết n+1 thì
9chia hết cho n+1
=>n+1 \(\inƯ\left(9\right)=\left\{1;3;9\right\}\)
ta có bảng sau
n+1 | 1 | 3 | 9 |
n | 2 | 4 | 10 |
tm | tm | tm |
vậy...
Ta có : 3n chia hết cho 5-2n
Suy ra :2x3n chia hết cho 5-2n
hay 6n chia hết cho 5-2n (1)
Lại có :5-2n chia hết cho 5-2n
Suy ra :3x(5-2n) chia hết cho 5-2n
hay 15-6n chia hết cho 5-2n (2)
Từ (1) và (2) suy ra
6n+(15-6n) chia hết cho 5-2n
hay 15 chia hết cho 5-2n
Suy ra 5-2n E Ư(15)={1;3;5;15}
-Xét trường hợp 1
5-2n=1
2n =5-1
2n =4
n =2 (thỏa mãn n E N)
-Xét trường hợp 2
5-2n =3
2n =5-3
2n =2
n =1 (thỏa mãn n E N)
-Xét trường hợp 3
5-2n=5
2n =5-5
2n =0
n =0 (thỏa mãn n E N)
-Xét trường hợp 4
5-2n=15
2n =5-15
2n =-10
n =-5 (loại vì n không thuộc N)
Vậy n E {0;1;2}
3n chia hết cho (n - 1)
=> (3n - 3) + 3 chia hết cho (n - 1)
=> 3(n - 1) + 3 chia hết cho (n - 1)
=> 3 chia hết cho (n - 1)
=> n - 1 thuộc Ư(3) = {1; 3}
=> n thuộc {2; 4}
3n chia hết cho (n-1)
n là 2 ; vì 32 chia hết cho (n = 2-1 = 1)
{32 Chia hết cho 1}