Cho tam giác ABC vuông tại A, trung tuyến BM. Phân giác góc BMA và BMC lần lượt cắt AB,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BM=\sqrt{6^2+8^2}=10\left(cm\right)\)

MD là phân giác

=>BD/BM=DA/AM

=>BD/5=DA/3=(BD+DA)/(5+3)=8/8=1

=>BD=5cm; DA=5cm

b: Xét ΔMBC cóME là phân giác

nên BE/EC=BM/MC=BM/MA=BD/DA

=>DE//AC

19 tháng 7 2016

kp nha

19 tháng 7 2016

a) Xét ΔABM vuông tại A có:

    \(BA^2+AM^2=BM^2\)(Theo Py-ta-go)

=> BM = 10(cm)

Vì MD là tia phân giác của góc BMA nên \(\frac{AM}{BM}=\frac{AD}{BD}\)

=> \(\frac{BD}{BM}=\frac{AD}{AM}=\frac{AD+BD}{BM+AM}=\frac{AB}{10+6}=\frac{8}{16}=\frac{1}{2}\)

=> BD = 1/2.BM = 1/2.10 = 5(cm)

 

19 tháng 7 2016

b) Vì ME là tia phân giác của góc BMC nên \(\frac{BM}{MC}=\frac{BE}{EC}\)

Vì BM là trung tuyến của ΔABC nên MA = MC

Lại có \(\frac{BM}{AM}=\frac{BD}{AD}\)        

Do đó \(\frac{BD}{AD}=\frac{BE}{EC}=\frac{AM}{BM}=\frac{CM}{BM}\)

=> DE // AC