Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10) Đặt n = 2k + 1
Khi đó A = 1 + 3 + 5 + 7 + ... + n
= 1 + 3 + 5 + 7 + ... + (2k + 1)
= [(2k + 1 - 1) : 2 + 1][(2k + 1 + 1) : 2
= (k + 1)2
=> A là số chính phương
Cấm cop mạng nhé
Mình làm rồi bây giờ thử sức các bạn
Bài 1 :
Ta có :
a chia 3 dư 1 ⇒a=3k+1⇒a=3k+1
b chia 3 dư 2 ⇒b=3k1+2⇒b=3k1+2 (k;k1∈N)(k;k1∈N)
ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2
Mà 3k.k1+2.3k+3.k1⋮33k.k1+2.3k+3.k1⋮3
⇒3k.k1+2.3k+3.k1+2⇒3k.k1+2.3k+3.k1+2 chia 3 dư 2
⇒ab⇒ab chia 3 dư 2 →đpcm→đpcm
Bài 2 :
Ta có :
n(2n−3)−2n(n+1)n(2n−3)−2n(n+1)
=2n2−3n−2n2−2n=2n2−3n−2n2−2n
=−5n⋮5=−5n⋮5
⇒n(2n−3)−3n(n+1)⋮5⇒n(2n−3)−3n(n+1)⋮5 với mọi n
→đpcm
Bài 1:
a=3n+1
b= 3m+2
a*b= 3( 3nm+m+2n ) + 2 số này chia 3 sẽ dư 2.
Bài 2:
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
= -5n
-5n chia hết cho 5 với mọi số nguyên n vì -5 chia hết cho 5
vậy n(2n-3)-2n(n+1) chia hết cho 5
Bài 1:
\(2009^{20}=\left(2009^2\right)^{10}=\left(2009.2009\right)^{10}\)
\(2009.2009^{10}=\left(10001.2009\right)^{10}\)
Ta thấy:
\(2009< 10001\Rightarrow2009.2009< 1001.2009\)
\(\Rightarrow\left(2009.2009\right)^{10}< \left(10001.2009\right)^{10}\)
\(\Rightarrow2009^{20}< 20092009^{10}\)
Bài 3:
a) Vì \(x,y\in Z\Rightarrow25-y^2⋮8\Rightarrow25-y^2=\left\{0;8;16;24\right\}\)
\(\Rightarrow\hept{\begin{cases}y=\pm5\Rightarrow x=0\\y=\sqrt{17}\left(lo\text{ại}\right)\end{cases}}\)
\(\hept{\begin{cases}y=\pm3\Rightarrow x=2011\\y=\pm1\Rightarrow x=2012\end{cases}}\)
b) \(x^3y=xy^3+1997\)
\(\Leftrightarrow x^3y-xy^3=1997\)
\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)
\(\Leftrightarrow xy\left(x+y\right)\left(x-y\right)=1997\)
Ta có: 1997 là số nguyên tố; xy(x+y)(x-y) là hợp số
\(\Rightarrow\left(x;y\right)\in\varnothing\)
c) \(x+y+9=xy-7\)
\(\Rightarrow x+y+16=xy\Rightarrow x+16=xy-y=y\left(x-1\right)\)
\(\Rightarrow y=\frac{x+16}{x-1}\left(x\ne1\right)\)
Mà do y thuộc Z\(\Rightarrow\frac{x+16}{x-1}\in Z\Rightarrow x+16⋮x-1\Rightarrow\left(x-1\right)+17⋮x-1\Rightarrow x-1\in\text{Ư}\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(x\in\left\{0;2;-16;18\right\}\)(Thỏa mãn do khác 1)
+) Nếu \(x=0\Rightarrow16+y=0\Rightarrow y=-16\)
+) Nếu \(x=2\Rightarrow18+y=2y\Rightarrow y=18\)
+) Nếu \(x=-16\Rightarrow y=-16y\Rightarrow y=0\)
+) Nếu \(x=18\Rightarrow y=2\)
Vậy \(\left(x;y\right)=\left(0,-16\right);\left(2;18\right);\left(-16;0\right);\left(18;2\right)\)
Bài 4:
n số \(x_1,x_2,x_3,....,x_n\)mỗi số nhận giá trị 1 hoặc -1
\(\Rightarrow\)n tích \(x_1.x_2+x_2.x_3+...+x_n.x_1\)mỗi tích bằng 1 hoặc -1
Mà: \(x_1.x_2+x_2.x_3+...+x_n.x_1=0\)
=> Số tích có giá trị bằng 1 hoặc -1 và bằng \(\frac{n}{2}\)
\(\Rightarrow n⋮2\)(n chẵn)
Xét \(A=\left(x_1.x_2\right).\left(x_2.x_3\right)....\left(x_n.x_1\right)\)
=> x12.x22....xn2=1>0
=> Số thừa số -1 là số chẵn
=>n/2 chẵn
=> n chia hết cho 4(đpcm)
Bài 6:
Hướng dẫn: giả sử \(A\left(x\right)=a_o+a_1x+a_2x^2+...+a_{4018}x^{4018}\)
Khi đó A(1)\(=a_o+a_1+a_2+...+a_{4018}\)
do A(1) =0 nên \(a_o+a_1+a_2+...+a_{4018}=0\)
Bài 7:
Gợi ý: Đặt x=111.1( n chữ số 1)
Ta có: 10n=9x+1
=> a=x10n+x=x(9x+1)+x;b=10x+1;c=6x
Ta có: a+b+c+8=x(9x+1)+x+10x+1+6x+8=9x2+18x+9=(3x+3)2
Cách khác: Quy về dạng tổng quát : a=(102n-1):9,...
Bài 9:
- Những phân số lớn hơn a nhỏ hơn b có mẫu là 7 là:
\(a+\frac{1}{7};a+\frac{2}{7};a+\frac{3}{7};...;b-\frac{2}{7};b-\frac{1}{7}\)
Tổng của chúng là: \(A=\left(a+\frac{1}{7}\right)+\left(a+\frac{2}{7}\right)+...+\left(b-\frac{2}{7}\right)+\left(b-\frac{1}{7}\right)\)
\(=\frac{1}{7}\text{[}\left(7a+1\right)+\left(7a+2\right)+...+\left(7b-2\right)+\left(7b-1\right)\text{]}\)
\(=\frac{1}{7}.\frac{1}{2}\text{[}\left(7a+1\right)+\left(7b-1\right)\text{]}\text{[}\left(7b-1\right)-\left(7a+1\right)+1\text{]}\)
\(=\frac{1}{14}\left(7a+7b\right)\left(7b-7a-1\right)=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)\)
- Những phân số lớn hơn a nhỏ hơn b sau khi rút gọn(vì 7 là số nguyên tố) là:
a+1;a+2;...;b-2;b-1
Tổng của chúng là: \(B=\left(a+1\right)+\left(a+2\right)+...+\left(b-2\right)+\left(b-1\right)\)
\(=\frac{1}{2}\text{[}\left(a+1\right)+\left(b-1\right)\text{]}\text{[}\left(b-1\right)-\left(a+1\right)+1\text{]}\)
\(=\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}\)
Tổng phải tìm là: \(A-B=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)-\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}=3\left(a^2-b^2\right)\)
Bài 10:
Đặt \(n=2k-1\left(k\in N,k>1\right)\). Ta có:
\(A=1+3+5+...+\left(2k-1\right)=\frac{1+\left(2k-1\right)}{2}.k=k^2\)
Vậy A là số chính phương
\(Bài 1: B = 1 + 2 + 3 + ... + 98 + 99 Số số hạng: (99 - 1) + 1 = 99 (số hạng) Tổng trên là: (99 + 1) . (98 : 2) + 50 = 4950 Bài 2: C = 1 + 3 + 5 + ... + 997 + 999 Số số hạng: (999 - 1) : 2 +1 = 500 (số hạng) Tổng trên là: (999 + 1) . (500 : 2) = 250 000 Bài 3. D = 10 + 12 + 14 + ... + 994 + 996 + 998 Số số hạng: (998 - 10) : 2 + 1 = 495 (số hạng) Tổng trên là: (998 + 10) . (494 : 2) + 248 = 249 224\)
Bài 1 :
Số số hạng của B là :
(99 - 1 ) : 1 + 1 = 99 ( số )
Tổng B là :
( 99 + 1 ) x 99 : 2 = 4950
Đ/s:......
Bài 2 :
Số số hạng của C là : ( 999 - 1 ) : 2 + 1 = 500 ( số )
Tổng C là : ( 999 + 1 ) x 500 : 2 = 250000
Đ/s:.....
10:
n lẻ nên n=2k-1
=>A=1+3+5+7+...+2k-1
Số số hạng là (2k-1-1):2+1=k-1+1=k(số)
Tổng là:
\(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\) là số chính phương(ĐPCM)
cảm on