Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:
\(\dfrac{b}{7}=\dfrac{c}{24}=k\Rightarrow b=7k,c=24k\)
Theo định lí Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
nên a = 25k
Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:
b7=c24=k⇒b=7k,c=24kb7=c24=k⇒b=7k,c=24k
Theo định lí Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
nên a = 25k
Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó
5k +12k + 13k = 30 => k = 1.
Từ đó độ dài cạnh huyền là 13 cm.
Tìm được độ dài các cạnh của tam giác lần lượt là:
6 cm, 8 cm, 10 cm.
gọi độ dài 2 cạnh góc vuông lần lượt là a, b ( cm ), độ dài cạnh huyền là c(cm) ( a,b,c > 0 ) Ta xét tam giác ABC vuông tại A
Đặt \(\frac{a}{7}\)= \(\frac{b}{24}\)= k => a = 7k, b = 24k
ta có \(\frac{ab}{2}\)= 336 => 7k * 24k = 672 => \(168k^2=672\)
=> \(k^2=4\)=> k = 2 => a = 2 * 7 = 14, b = 2 * 24 = 48
Xét tam giác ABC vuông tại A theo định lý Py-ta-go ta có
\(a^2+b^2=c^2\)=> \(c^2=14^2+48^2\)
=> \(c^2=2500\)=> c = 50 cm
vậy độ dài cạnh huyền là 50 cm
Một tam giác vuông có cạnh huyền bằng 26cm và có độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông?
A. 10 cm, 22 cm
B. 10 cm, 24 cm
C. 12 cm, 24 cm
D. 15 cm, 24 cm
Gọi độ dài 2 cạnh là \(x\), \(y\)( \(x\), \(y\)> 0 )
Theo định lý Pitago ta có : \(\frac{x}{5}=\frac{y}{12}\)\(\Rightarrow\)\(\frac{x^2}{25}=\frac{y^2}{144}=\frac{x^2+y^2}{25+144}\)
= \(\frac{676}{169}=4\)
\(\Leftrightarrow\)\(x^2=25.4\)
\(\Leftrightarrow\)\(x^2=100\)
\(\Leftrightarrow\)\(x=10\)cm
Ta lại có :
\(\Leftrightarrow\)\(y^2=144.4\)
\(\Leftrightarrow\)\(y^2=576\)
\(\Leftrightarrow\)\(y=24\)
Vậy ...................
=> Chọn B
Hok tốt