K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2015

dễ

ai tích mình lên 10 cái mình tích người ấy cả tháng

24 tháng 11 2015

a)

6 chia hết cho n-1

=>n-1 thuộc Ư(6)={1;2;3;6}

=>n thuộc {2;3;4;7}

b/

8 chia hết cho n-1

=>n-1 thuộc U(8)={1;2;4;8}

=>n thuộc {2;3;5;9}

c/

14 chia hết cho 2n+3

=>2n+3 thuộc U(14)={1;2;7;14}

2n+3=1=>2n=-2=>n=-1 loại

2n+3=2=>2n=-1=>n=-1/2 loại

2n+3=7=>2n=4=>n=2 TM

2n+3=14=>2n=11=>n=11/2 laoij

vậy n=2

30 tháng 10 2017

a)

\(n+4⋮n+1\Leftrightarrow\left(n+1\right)+3⋮n+1\)

\(3⋮n+1\)(vì n+1 chia hết cho n+1)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)

\(n+1=1\Rightarrow n=0\)

\(n+1=3\Rightarrow n=2\)

Vậy \(n\in\left\{0;2\right\}\)

b) 

\(2n+3⋮n+1\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(\Rightarrow1⋮n+1\)(vì 2(n+1) chia hết cho n+1)

\(\Rightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\)

\(\Rightarrow n+1=1\Rightarrow n=0\)

Vậy \(n=0\)

30 tháng 10 2017

o  a la 125

b la 1524,786

30 tháng 10 2017

a)

(n + 4 ) chia hết ( n + 1 )

(n + 1 ) +3 chia hết ( n + 1 )

vì n+1 luôn chia hết cho n+1 nên để (n + 1 ) +3 chia hết ( n + 1 ) thì 3 cũng phải chia hết cho n+1

=> n+1 thuộc Ư( 3 )

b)

tương tự phần a

cho mk nha

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)

28 tháng 10 2020

a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:

\(n-2\)\(1\)\(2\)\(3\)\(6\)
\(n\)\(3\)\(4\)\(5\)\(8\)

Vậy \(n\in\left\{3;4;5;8\right\}\)

28 tháng 10 2020

b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
                                            hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:

\(n-1\)\(1\)\(2\)\(4\)
\(n\)\(2\)\(3\)\(5\)


Vậy \(n\in\left\{2;3;5\right\}\)