Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|=\left|\frac{5}{4}-x\right|+\left|x+2\right|\)
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)với \(xy\ge0\) ta có:
\(M=\left|\frac{5}{4}-x\right|+\left|x+2\right|\ge\left|\frac{5}{4}-x+x+2\right|=\left|\frac{13}{4}\right|=\frac{13}{4}\)với \(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Lập bảng xét dấu:
x | -2 5/4 |
5/4-x | + | + 0 - |
x+2 | - 0 + | + |
(5/4-x)(x+2) | - 0 + 0 - |
Nhìn bảng xét dấu dễ thấy \(-2\le x\le\frac{5}{4}=1,25\) thỏa mãn\(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Vì x nguyên => \(x\in\left\{-1;0;1\right\}\)
Vậy Mmin=13/4 khi \(x\in\left\{-1;0;1\right\}\)
Tập hợp các giá trị nguyên của x để M = \(|x-\left\{\frac{5}{4}\right\}|+|x+2|\)
đạt giá trị nhỏ nhất
\(D=\left|2x+2,5\right|+\left|2x-3\right|=\left|2x+2,5\right|+\left|3-2x\right|\ge\left|2x+2,5+3-2x\right|=5,5\)
Vậy GTNN của D là 5,5 khi \(\begin{cases}2x+2,5\ge0\\3-2x\ge0\end{cases}\)\(\begin{cases}x\ge-\frac{5}{4}\\x\le\frac{3}{2}\end{cases}\)\(\Leftrightarrow-\frac{5}{4}\le x\le\frac{3}{2}\)
Mà x nguyên nên \(x\in\left\{-1;0;1\right\}\)
\(\Rightarrow\sqrt{x}-3\)phải ước của 5: 1;5;-1;-5
\(\Rightarrow\sqrt{x}-3\)=1\(\Rightarrow\)x=16
\(\Rightarrow\sqrt{x}-3\)=5\(\Rightarrow\)x=64
\(\Rightarrow\sqrt{x}-3\)=-1\(\Rightarrow\)x=4
\(\Rightarrow\sqrt{x}-3\)=-5\(\Rightarrow\sqrt{x}\)=-2 \(\Rightarrow\)x=-4
mà ta có căn của x là 1 số luôn luôn lớn hơn hoặc =0 nên cái này ta loại nghe bạn
vậy x=\(\hept{\begin{cases}4\\64\\16\end{cases}}\)