Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{ax-a^2-x^2-a^2}{x+a}\cdot\dfrac{2a\left(x-a\right)-4ax}{x\left(x-a\right)}\)
\(=\dfrac{x\left(a-x\right)}{x+a}\cdot\dfrac{2a\left(x-a-2x\right)}{x\left(x-a\right)}\)
\(=-2a⋮2\)
Rút gọn biểu thức ta có:
Với a là một số nguyên thì giá trị biểu thức bằng 2a là một số chẵn.
*C/m với x nguyên, 2a, a+b, c là các số nguyên khi đa thức P(x) luôn nhận giá trị nguyên.
\(P\left(0\right)=c\) nguyên.
\(P\left(1\right)=a+b+c\) nguyên mà c nguyên \(\Rightarrow a+b\) nguyên. (1)
\(P\left(2\right)=4a+2b+c\) nguyên mà c nguyên \(\Rightarrow4a+2b\) nguyên. (2)
-Từ (1), (2) suy ra a, b nguyên \(\Rightarrow\)2a nguyên.
\(\Rightarrow\)đpcm.
*C/m với x nguyên, đa thức P(x) luôn nhận giá trị nguyên khi 2a, a+b, c nguyên.
-Từ đây suy ra cả 3 số a,b,c đều nguyên.
\(\Rightarrow\)đpcm.
Hazz suy nghĩ nãy h ko được cách nào -_- làm tạm đi
* Nếu x và y chẵn :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+2m-1000\right|.\left(2n-2m-1017\right)\)
\(A=2\left|n+m-1000\right|.\left(2n-2m-1017\right)⋮2\)
Vậy A là số chẵn
* Nếu x chẵn và y lẻ :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+2m+1-1000\right|.\left(2n-2m-1-1017\right)\)
\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\)
Lại có :
\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ \(\left(1\right)\) ( chẵn trừ lẻ = lẻ )
\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1018\) chẵn \(\left(2\right)\) ( chẵn trừ chẵn = chẵn )
Từ (1) và (2) suy ra \(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\) chẵn ( lẻ nhân chẵn = chẵn )
Vậy A là số chẵn
* Nếu x lẻ và y chẵn :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+1+2m-1000\right|.\left(2n+1-2m-1017\right)\)
\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\)
Lại có :
\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ ( chẵn trừ lẻ = lẻ ) \(\left(3\right)\)
\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1016\) chẵn ( chẵn trừ chẵn = chẵn ) \(\left(4\right)\)
Từ (3) và (4) suy ra \(\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\) chẵn ( lẻ nhân chẵn = chẵn )
Vậy A là số chẵn
* Nếu x và y lẻ :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+1+2m+1-1000\right|.\left(2n+1-2m-1-1017\right)\)
\(A=\left|2n+2m-998\right|.\left[2\left(n-m\right)-1017\right]\)
\(A=2\left|n+m-499\right|.\left[2\left(n-m\right)-1017\right]⋮2\)
Vậy A là số chẵn
Từ 4 trường hợp trên ta suy ra A là số chẵn với mọi x, y là số nguyên
Vậy A là số chẵn \(\forall x,y\inℤ\)
Chúc bạn học tốt ~
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
~~~Học Tốt~~~
Rút gọn biểu thức ta có :
\(\left(a-\frac{x^2+a^2}{x+a}\right).\left(\frac{2a}{x}-\frac{4a}{x-a}\right)\)
\(=\frac{a\left(x+a\right)-\left(x^2+a^2\right)}{x+}.\frac{2a\left(x-a\right)-4a.x}{x\left(x-a\right)}\)
\(=\frac{ax+a^2-x^2-a^2}{x+a}.\frac{2ax-2a^2-4ax}{x\left(x-a\right)}\)
\(=\frac{ax-x^2}{x+a}.\frac{-2a^2-2ax}{x\left(x-a\right)}\)
\(=\frac{-\left(x^2-ax\right)}{\left(x+a\right)}.\frac{-\left(2a^2+2ax\right)}{x\left(x-a\right)}\)
\(=\frac{\left(x^2-ax\right).\left(2a^2+2ax\right)}{x\left(x+a\right)\left(x-a\right)}\)
\(=\frac{x\left(x-a\right).2a\left(a+x\right)}{x\left(x+a\right)\left(x-a\right)}\)
\(=2a\)
Với a là một số nguyên thì giá trị biểu thức bằng 2a là một số chẵn.
Chúc bạn học tốt !!!