K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

Bn tự vẽ hình nha!!!

a) Xét \(\Delta ABM\)\(\Delta DCM\) có:

MB = MC (M là trung điểm BC (gt))

\(\widehat{AMB} = \widehat{DMC}\)(đối đỉnh)

MA = MD (gt)

\(\Rightarrow\)\(\Delta ABM = \Delta DCM (cgc)\)

b) Vì \(\Delta ABM = \Delta DCM (cmt)\)

\(\Rightarrow\)\(\widehat{BAM} = \widehat{CDM}\) (2 góc tương ứng)

mà 2 góc này nằm ở vị trí so le trong

\(\Rightarrow\) AB // CD

c) \(\Delta ABM = \Delta DCM (cmt)\)

\(\Rightarrow\) AB = DC (2 cạnh tương ứng)
Vì AB // CD (cmt)
\(AB \perp AC \)
\(\Rightarrow\) \(CD \perp AC\) (Định lí 2 bài từ vuông góc đến song song)
Xét \(\Delta ABC\)\(\Delta CDA\) có:
\(\widehat{BAC} = \widehat{DCA} = 90^0 \)
AB = CD (cmt)
AC chung
\(\Rightarrow\)\(\Delta ABC = \Delta CDA\) (2 cạnh góc vuông)
\(\Rightarrow\) AD = BC (2 cạnh tương ứng)
\(AM=\frac{1}{2}AD\)
\(\Rightarrow AM=\frac{1}{2}BC\)
 

 

23 tháng 12 2016

cảm ơn bạn nhìu nhìu lắm

22 tháng 2 2018

a) xét tam giác ABM = DCM( c-g-c ) (*)

=) * góc BAD = góc ADC

=) AB // CD

    * AB = DC ( 1 )

xét tam giác ABH= EBH ( c-g-c )

=) AB = BE    ( 2 )

từ (1) và (2)=) CD=BE

b) ( đề sai, phải là CD vuông góc AC mới đúng )

từ (*) =) góc ABM = DCM

mà tg ABC vuông tại A=) ABM+ACB=90 độ

suy ra góc DCM+ACB=90 độ

=) CD vuông góc vs AC

c ) áp dụng trung tuyến cạnh huyền =) AM=1/2BC

d) Do AM = 1/2BC

=) BC = 10cm

áp dụng định lý py-ta-go cho tg ABC vuông tại A ta có:

AB^2 + AC^2 = BC^2

AB^2             = 36

AB                 = 6cm

28 tháng 5 2017

a) Ta có: AC vừa là trung tuyến vừa là đường cao của tam giác CBD

=> Tam giác CDB cân tại C

b) Ta có: AM song song với BC(gt) và A là trung điểm của DB

=> M cũng là trung điểm của CD (Định lý về đường trung bình)

c) M là trung điểm của CD (theo câu b) và N là trung điểm của CB(gt)

=> MN là đường trung bình của tam giác CBD => MN // DB

28 tháng 5 2017

\(4.\)- Vì \(\Delta CBD\)cân tại \(C\)(cmt)  \(\Rightarrow\) \(CA\)là tia phân giác \(\widehat{BCD}\)
                                                         \(\Rightarrow\) \(\widehat{BCD}=2.\widehat{BCA}=2.30^0=60^0\)
- Xét \(\Delta BCA\)vuông tại \(A\) \(\Rightarrow\) \(\widehat{ABC}+\widehat{BCA}=90^0\)                   
                                              \(\Rightarrow\)\(\widehat{ABC}=90^0-\widehat{BCA}=90^0-30^0=60^0\)
- Xét \(\Delta CBD\)có \(\widehat{BCD}=60^0;\)\(\widehat{ABC}=60^0\) \(\Rightarrow\) \(\Delta CBD\)đều
- Xét  \(\Delta CBD\)đều  có:
  \(\cdot\) \(M\)là trung điểm của \(DC\) (cmt)   suy ra  \(BM\) là đường trung tuyến của \(DC\)
  \(\cdot\) \(A\) là trung điểm của \(DB\) (gt)      suy ra  \(CA\) là đường trung tuyến của \(DB\)
mà   \(BM\)cắt \(CA\) tại \(G\)  (gt)  suy ra \(G\)là trọng tâm của \(\Delta CBD\)
     nên  \(BG=2.GM=2.3=6\left(cm\right)\)
- Vì    \(\Delta CBD\)đều nên \(BM=CA\)suy ra \(GA=GM=3cm\)
- Xét \(\Delta ABG\) vuông tại \(A\)theo định lý Py-ta-go,
   ta được:           \(AB^2=BG^2-AG^2=6^2-3^2=27\)(cm)
                \(\Rightarrow\)  \(AB=\sqrt{27}\)