Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
a) 99^20 - 11^9
Ta có : 99^20 = ....1
11^9 = ....1
Mà : ....1 - .....1 = 0 => Tận cùng của 99^20 - 11^9 là 0 => \(⋮\)2
b) 99^8 - 66^2
Ta có : 99^8 = ...1 ; 66^2 = ....6
Mà : ....1 - ....6 = ....5 => Tận cùng của 99^8 - 66^2 là 5 => \(⋮\)5
c) 2011^10 - 1
Ta có : 2011^10 = ....1
Mà : ....1 - 1 = ....0 => Tận cùng của 2011^10 - 1 là 0 => \(⋮\)10
99^20 le;11^9 le nen hieu chia het cho 2
99^8=...1;66^2=6 nen hieu =...5 chia het cho 5
2011^10-1=..1-1=..0 chia het cho 10
Bai nay de ma
Giải
A=(1+3^1)+(3^2+3^3)+...+(3^98+3^99)
A=4.1+3^2.(1+3^1)+...3^98.(1+3^1)
A=4.1+3^2.4+...3^98.4
A=4.(1+3^2+3^4+...+3^98)
=> A chia hết cho 4
=(992)4-662
=(......1)4-662
Các số có tận cùng =0;1;5;6 nâng lên lũy thừa bao nhiêu thì cũng đều có tận cùng bằng chính nó.
Vậy chữ số tận cùng của biểu thức là ...1-..6=...5
Vậy 998-662 chia hết cho 5
A = 7+72 + 73 +....+ 7100
= (7+72) + (73 + 74)+.....+(799+7100)
= 7(1+7) + 73(1+7)+.......+799(1+7)
= 8(7+72+73+.....+ 799) chia hết cho 8
A = 7 + 72 + 73 + ... + 799 + 7100
A = ( 7 + 72 ) + ( 73 + 74 ) + ... + ( 799 + 7100 )
A = ( 1 + 7 ) . 7 + ( 1 + 7 ) . 73 + ... + ( 1 + 7 ) . 799
A = 8 . 7 + 8 . 73 + ... + 8 . 799
A = 8 . ( 7 + 73 + ... + 799 )
=> A chia hết cho 8 (đpcm)
+ Vì 8 : 2 và cứ 992 lại tận cùng là 1 nên 998 cũng có tận cùng là 1
+ Ta thấy: 66n(n > 0) luôn luôn có tận cùng là 6. Vậy, 662 có tận cùng là 6
\(\Rightarrow\) Chữ số tận cùng của 998 - 662 là 11 - 6 = 5. \(\Rightarrow\) 998 - 662 \(⋮\) 5
\(\Rightarrow\) ĐPCM