Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Không gian mẫu : Ω= { (i,j)∖ i.j = 1,2,3,4,5,6}
với i là số chấm xuất hiện trên mặt con súc sắc thứ nhất , j là số chấm xuất hiên trên mặt con súc sắc thứ 2. → /Ω/ = 36
b) từ gt ta có:
ΩA = { (1,1); (1,2); (1,3); (1,4); (1,5); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (4,1); (4,2); (5,1); (1,6); (3,4); (4,3); (5.2); (2,5); (6,1)}
→/ΩA/ = 21
Do đó: P(A) = /ΩA/ phần /Ω/ = 21/36 = 7/12
c) từ gt có:
ΩB = { (1,6) ; (2,6);... (6,6) ; (6,1); (6,2);..; (6,5)}
ΩC = {như trên nhưng trừ (6,6)}
do đó: P(B) = 11/36
P(C) = 10/36 = 5/18
a. Không gian mẫu là 6*6=36
b. A có các kết quả thuận lợi là (1,6) (6,1) (2,5) (5,2) (3,4) (4,3)
c. Biến cố đối của B sẽ là " Không có con xúc xắc nào xuất hiện mặt 6 chấm" Tức là con xúc xắc sẽ trở thành có 5 mặt => 5A2+5
=> P(B)= 1- P(Biến cố đối B)
d. (6,1) (6,2) (6,3) (6,4) (6,5) và ngược lại. Trừ (6,6)
=> có 10
=> P(C)= 10/36= 5/18
Gọi con số xuất hiện trên xúc xắc thứ i (với \(1\le i\le5\) ) là \(x_i\) (với \(1\le x_i\le6\))
Ta cần tìm số bộ nghiệm nguyên dương của pt:
\(x_1+x_2+x_3+x_4+x_5=14\)
Đặt \(y_i=x_i-1\Rightarrow y_1+y_2+y_3+y_4+y_5=9\) (1) với \(y_i\) không âm
Đưa về bài toán chia kẹo Euler: tìm số nghiệm nguyên không âm của pt:
\(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\le5\end{matrix}\right.\)
Theo bài toán chia kẹo, số nghiệm nguyên ko âm bất kì của (1) là: \(C_{9+5-1}^{5-1}=C_{13}^4\)
Bây giờ, do vai trò của \(y_i\) như nhau, ta xét pt: \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_1\ge6\end{matrix}\right.\)
Đặt \(y_1-6=z_1\Rightarrow z_1+y_2+y_3+y_4+y_5=3\) (2)
\(\Rightarrow\) (2) có số nghiệm nguyên ko âm là: \(C_{5+3-1}^{5-1}=C_7^4\)
Do ko thể tồn tại cùng lúc 2 giá trị i; j sao cho \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\ge6;y_j\ge6\end{matrix}\right.\)
Nên các trường hợp \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\ge6\end{matrix}\right.\) là độc lập (các tập hợp này giao nhau đều bằng rỗng)
Do đó, số nghiệm của pt: \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\le5\end{matrix}\right.\) là: \(C_{13}^4-5.C_7^4\)
E = {(2,2); (2, 4); (2, 6); (4, 2); (4, 4); (4, 6); (6, 2); (6, 4); (6, 6)}
F = {(1,2); (1, 4); (1, 6); (3, 2); (3, 4); (3, 6); (5, 2); (5, 4); (5, 6)}
K = {(2,2); (2, 4); (2, 6); (4, 2); (4, 4); (4, 6); (6, 2); (6, 4); (6, 6); (1,2); (1, 4); (1, 6); (3, 2); (3, 4); (3, 6); (5, 2); (5, 4); (5, 6)}
Vậy K là biến cố hợp của E và F
E={(2;2); (2;4); (2;6); (4;2); (4;4); (4;6); (6;2); (6;4); (6;6)}
F={(1;2); (2;1); (1;4); (4;1); (1;6); (6;1);(2;3); (3;2); (2;5); (5;2); (3;4); (4;3); (3;6); (6;3); (5;4); (4;5); (6;5); (5;6)}
K={(2;2); (2;4); (2;6); (4;2); (4;4); (4;6); (6;2); (6;4); (6;6); (1;2); (2;1); (1;4); (4;1); (1;6); (6;1);(2;3); (3;2); (2;5); (5;2); (3;4); (4;3); (3;6); (6;3); (5;4); (4;5); (6;5); (5;6)}}
=>K là hợp của E và F
A={3;6}
B={4}
Hai biến cố này không thể đồng thời xảy ra được vì \(A\cap B=\varnothing\)
Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega \right) = 6.6 = 36\)
A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)
B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)
C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)
D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)
Do đó
\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)
Mặt khác
AC = \(\emptyset \Rightarrow P\left( {AC} \right) = 0\)
BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)
CD = \(\emptyset \Rightarrow P\left( {CD} \right) = 0\)
Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)
Vậy các cặp biến cố A và C; B và C, C và D không độc lập.