Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+5
Ta có x4\(\ge0\)
=>x4+5>0
Vậy đa thức x4+5 vô nghiệm
5x2+x+6=5x2+x-5+11
=(5x2-5)+(x+1)+10
=5(x2-1)+(x+1)+10
=5(x-1)(x+1)+(x+1)+10
=(x+1)[5(x-1)+1]+10
Với x\(\ge\)0, ta có x+1 và 5(x-1)+1 luôn là số dương => đa thức là số dương, vô nghiệm
Với x<0, ta có x+1 và 5(x-1) đều là số âm =>(x+1)[5(x-1)+1]+10>0, vô nghiệm
=>đpcm
ta có 2x ^ 4 >= 0 với mọi x
3x ^ 2 >= 0 với mọi x
suy ra: 2x^4 + 3x ^2 >= 0
2x^4 + 3x ^2 +6 >= 6 > 0
hay M(x) > 0
vậy đa thức M(x) vô nghiệm
a) 2x+6=0 => 2x=-6 => x=-6:2=-3
ĐS: x=-3
b) Ta có:
M(y)=2y4+3y2+1=y4+2y2+1+y4+y2=(y2+1)2+y2(y2+1)=(y2+1)(y2+1+y2)=(y2+1)(2y2+1)
Nhận thấy; y2+1 và 2y2+1 luôn lớn hơn 1 với mọi y
=> M(y) lớn hơn 1 với mọi y => Đa thức M(y) không có nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
Để P(y) có ngiệm <=> 3y+6=0 <=> y=-2
Vậy...
Ta có y^4 >=0 => Q(y) >=2>0 => Q(y) vô nghiệm
a) Tìm nghiệm của đa thức P(y) = 3y + 6.
b) Chứng tỏ rằng đa thức sau không có nghiệm: Q(y) = y4 + 2.
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
a) Ta có: P(x) = 3y + 6 có nghiệm khi:
3y + 6 = 0
3y = –6
y = –2
Vậy đa thức P(y) có nghiệm là y = –2.
b) Ta có: y4 ≥ 0 với mọi y.
Nên y4 + 2 > 0 với mọi y.
Tức là Q(y) ≠ 0 với mọi y.
Vậy Q(y) không có nghiệm. (đpcm)
(Giải thích: y4 có số mũ là số chẵn nên nó luôn có giá trị lớn hơn hoặc bằng 0. Kể cả khi bạn thay y bằng số âm vào. Ví dụ, thay y = -2 chẳng hạn thì y4 = (-2)4 = 16 là số dương.)