K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Giả sử \(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)(Vì a, b, c > 0)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ab+bc\)

\(\Leftrightarrow ac< bc\)(Đúng vì c > 0 và a < b)

Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)(đpcm)

Trả lời:

Ta có:

\(\frac{a}{b}< \frac{a+c}{b+c}\)

⇔ a(b + c) < (a + c)b

(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)

⇔ ab + ac < ab + bc

⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)

9 tháng 5 2017

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ab+bc\)

\(\Leftrightarrow ac< bc\)

\(\Rightarrow a< b\) (đúng)

Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\) (đpcm)

9 tháng 5 2017

Ta có giả sử \(\frac{a}{b}< \frac{a+c}{b+c}\) ( a,b,c nguyên dương )
(=) \(a.\left(b+c\right)< b.\left(a+c\right)\)
(=) \(ab+ac< ab+bc\)
(=) \(ac< bc\)( Cùng loại cả 2 vế \(ab\)
(=) \(a< b\)(Loại bỏ 2 vế \(c\))
Điều \(a< b\)đúng vì theo đề bài
Vì điều \(a< b\)đúng 
(=) \(\frac{a}{b}< \frac{a+c}{b+c}\)với a>0,b>0,c>0 và a<b (đpcm)

13 tháng 4 2017

\(VT=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+c+b}+\frac{c+b}{c+a+b}=2=VT\)

24 tháng 8 2016

a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc

b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

9 tháng 5 2019

a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)

Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)

b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)

Giả sử a<b, ta đặt b=a+k(k>0)

Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)

Chứng minh tương tự với a>b

9 tháng 5 2019

cm cái j v bn ? 

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.