K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

Với mọi \(x\in R\) ta có :

\(\frac{a}{a^2+1}\le\frac{1}{2}\Leftrightarrow\frac{2a}{2\left(a^2+1\right)}\le\frac{a^2+1}{2\left(a^2+1\right)}\)

\(\Leftrightarrow2a\le a^2+1\) ( do \(2\left(a^2+1\right)>0\) )
\(\Leftrightarrow a^2-2a+1\ge0\Leftrightarrow\left(a-1\right)^2\ge0\) là bất đẳng thức đúng :

Vậy \(\frac{a}{a^2+1}\le\frac{1}{2}\) với mọi \(a\in R\)

Chúc bạn học tốt !!!

19 tháng 9 2019

Miền giá trị thử ạ:)

Đặt \(f=\frac{a}{a^2+1}\)

Ta có:\(f\left(a^2+1\right)=a\)

\(\Leftrightarrow fa^2+f-a=0\)

Với \(f=0\Rightarrow a=0\)

Với \(f\ne0\) thì \(f\) là pt bậc 2 ẩn a nên \(\Delta_a=1-4f^2\ge0\Leftrightarrow-\frac{1}{2}\le\left|f\right|\le\frac{1}{2}\)

\(\left|f\right|\le\frac{1}{2}\) Dấu "=" xảy ra tại \(a=\frac{1}{2f}=1\)

P/S:E mới học nên ko chắc đâu ạ

18 tháng 9 2019

Ta có a + b =1 \(\Leftrightarrow b=1-a\)

Thay vào bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\) , ta được:

\(a^2+\left(1-a\right)^2\ge\frac{1}{2}\Leftrightarrow a^2+1-2a+a^2̸̸\ge\frac{1}{2}\)

\(\Leftrightarrow2a^2-2a+1\ge\frac{1}{2}\Leftrightarrow4a^2-4a+2\ge1\)

\(\Leftrightarrow4a^2-4a+1\ge0\Leftrightarrow\left(2a-1\right)^2\ge0\) ( luôn đúng )
Vậy bất đẳng thức được chứng minh

Chúc bạn học tốt !!!

28 tháng 8 2017

Ta có :

\(\left(a-1\right)^2\ge0\Leftrightarrow a^2-2a+1\ge0\Rightarrow a^2+1\ge2a\)(1)

\(\left(b-1\right)^2\ge0\Leftrightarrow b^2-2b+1\ge0\Rightarrow b^2+1\ge2b\)(2)

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)(3)

Cộng các vế tương ứng của (1);(2);(3) lại ta được :

\(\left(a^2+1\right)+\left(b^2+1\right)+\left(a^2+b^2\right)\ge2a+2b+2ab\)

\(\Leftrightarrow2a^2+2b^2+2\ge2a+2b+2ab\)

\(\Rightarrow a^2+b^2+1\ge ab+a+b\)(đpcm)

4 tháng 4 2015

Câu a) 

Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b

Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1

Câu b) Áp dụng BĐT Bunhiacopxki ta có

(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2

Dấu "=" xảy ra <=> x = y

4 tháng 4 2015

câu1 : cần sửa lại là A + B2 \(\ge\frac{1}{2}\)

Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)

<=> A + B + 2A.B \(\le\) 2. (A + B2)

<=> 0 \(\le\) A + B - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng

b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm

23 tháng 6 2018

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}=\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}=\frac{\left(a-b\right)\left(a^3-b^3\right)}{a^2b^2}=\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\)

ta có \(\left(a-b\right)^2\ge0;a^2+ab+b^2>0;a^2b^2>0\)

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge\frac{a}{b}+\frac{b}{a}\)

12 tháng 9 2019

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)  ( 1 )

\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)     ( 2 )

\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 ) 

( Dấu " = " xảy ra khi x = y ) 

Chúc bạn học tốt !!!

29 tháng 10 2015

\(a^2+b^2=a^2-2ab+b^2+2ab=\left(a-b\right)^2+2ab\)

Vì  \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2+2ab\ge2ab\left(dpcm\right)\)

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

5 tháng 12 2016

Mình sẽ chứng minh bằng biến đổi tương đương nhé :)

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)(luôn đúng)

Vì BĐT cuối luôn đúng nên BĐT ban đầu được chứng minh.