K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2023

(SAC) có: \(KM\cap AC=I\)

(ABC) có: \(IN\cap AB=J\)

Ta được thiết diện của hình chóp và (KMN) là tứ giác KJNM.

3 tháng 10 2019

+ Trong mp(SAC) gọi giao điểm của AC và KM là E

Trong mp(ABC) gọi I là giao điểm của AB và EN.

Từ đó suy ra thiết diện cần tìm là tứ giác MNIK.

+Trong mp(SAC) dựng AF// SC

9 tháng 11 2023

a) Ta có:
- M là trung điểm của AB, nên M là trung điểm của đoạn thẳng AB.
- P là trung điểm của SC, nên P là trung điểm của đoạn thẳng SC.
- I là trung điểm của SB, nên I là trung điểm của đoạn thẳng SB.

Vì M, P, I lần lượt là trung điểm của các đoạn thẳng AB, SC, SB, nên ta có:
2AM = AB, 2CP = CS, 2BI = BS.

Giả sử BC không song song với MP. Khi đó, ta có:
- MP cắt BC tại H.
- MP cắt SA tại K.
- MP cắt QN tại L.

Theo định lý , ta có:
AH/HC = AK/KS = AL/LQ.

Từ đó, ta có:
2AM/2CP = AK/KS = AL/LQ.

Tuy nhiên, ta đã biết rằng 2AM/2CP = AB/CS = BS/CS = BI/CS = 2BI/2CP.

Vậy ta có:
2BI/2CP = AK/KS = AL/LQ.

Do đó, ta có AK = AL và KS = LQ.

Từ đó, ta suy ra K = L và Sẽ có MP song song với BC.

Vậy BC // (IMP).

b) Thiết diện của mặt phẳng (α) với hình chóp là một hình tam giác. Để xác định hình tam giác này, cần biết thêm thông tin về góc giữa mặt phẳng (α) và mặt phẳng đáy ABC.

c) Đường thẳng CN và mặt phẳng (SMQ) giao nhau tại một điểm. Để tìm giao điểm này, cần biết thêm thông tin về góc giữa đường thẳng CN và mặt phẳng (SMQ).

--thodagbun--

(Bn tham khảo cách lm đy nhe )

26 tháng 10 2023

S A B C D M N O G K H P Q

a/

Ta có

\(S\in\left(SAC\right);S\in\left(SBD\right)\)

Trong mp (ABCD) gọi O là giao của AC và BD

\(O\in AC\Rightarrow O\in\left(SAC\right);O\in BD\Rightarrow O\in\left(SBD\right)\)

\(\Rightarrow SO\in\left(SAC\right)\) và \(SO\in\left(SBD\right)\) => SO là giao tuyến của (SAC) và (SBD)

b/

Trong mp (ABCD) Từ G dựng đường thẳng // AC cắt BC tại K

Xét tg SAC có

SM=AM (gt); SN=CN (gt) => MN là đường trung bình của tg SAC

=> MN//AC

Mà GM//AC

=> MN//GK mà \(G\in\left(GMN\right)\Rightarrow GK\in\left(GMN\right)\) (Từ 1 điểm trong mặt phẳng chỉ dựng được duy nhất 1 đường thẳng thuộc mặt phẳng đó và // với 1 đường thẳng cho trươc thuộc mặt phẳng)

\(\Rightarrow K\in\left(GMN\right);K\in BC\) => K llaf giao của BC với (GMN)

c/

Ta có

\(KN\in\left(GMN\right);KN\in\left(SBC\right)\) => KN là giao tuyến của (GMN) với (SBC)

Trong (ABCD) KG cắt AB tại H

\(KG\in\left(GMN\right)\Rightarrow KH\in\left(GMN\right)\)

\(KG\in\left(ABCD\right)\Rightarrow KH\in\left(ABCD\right)\)

=> KH là giao tuyến của (GMN) với (ABCD)

Ta có 

\(HM\in\left(SAB\right);HM\in\left(GMN\right)\) => HM là giao tuyến của (GMN) với (SAB)

Trong mp(SAC) gọi P là giao của SO với MN

\(P\in MN\Rightarrow P\in\left(GMN\right)\)

Trong mp(SBD) Nối G với P cắt SD tại Q

\(\Rightarrow GP\in\left(GMN\right)\Rightarrow Q\in GMN\)

\(\Rightarrow MQ\in\left(GMN\right)\) mà \(MQ\in\left(SAD\right)\) => MQ là giao tuyến của (GMN) với (SAD)

Ta có

\(NQ\in\left(GMN\right);NQ\in\left(SCD\right)\) => NQ là giao tuyến của (GMN) với (SCD)

=> thiết diện của hình chóp bị cắt bởi (GMN) là đa giác HMQNK

 

 

 

 

9 tháng 9 2021

Gọi (α) là mặt phẳng qua O song song với AB và SC.

AB // (α) nên (α) cắt mp(ABCD) theo giao tuyến qua O và song song với AB. Gọi M, N lần lượt là giao điểm của đường thẳng qua O song song AB với BC và AD.

Trong mặt phẳng (SAC) kẻ OP // SC (P ϵ AS) (α) cắt mp(SAB) theo giao tuyến PQ // AB (Q ϵ SB)

Thiết diện cần tìm là tứ giác MNPQ.

Tứ giác MNPQ có PQ // MN nên MNPQ là hình thang.

15 tháng 2 2017

Đáp án C.

+ (ABD) và (IMK) có điểm chung là k và lần lượt chứa hai đường thẳng AB // MI

=> Giao tuyến của (ABD) và (IMK) là đường thẳng đi qua K và song song với AB  và AD tại E Thiết diện cần tìm là tứ giác MKEI có 

Từ (1) và (2) => Tứ giác MKEI là hình thang cân với đáy lớn là MI

+ Có 

Gọi H là hình chiếu vuông góc của E lên MI 2IH + EK = IM 

26 tháng 12 2021

loading...

 

28 tháng 12 2021

loading...

 

NV
29 tháng 7 2021

undefined

NV
29 tháng 7 2021

À, "không tính" là đang nói tới D, E trong hình vẽ của em (nằm trên cạnh chóp kéo dài), không phải D, E trong hình của mình (nằm trên cạnh chóp)