Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh tam giac AMB = tam giac DMC
Xét tam giác MAB và tam giác MDC, có
- MA = MD (M là trung điểm AD)
- MB = MD (M là trung điểm BD)
- Góc M đối nhau
=> tam giác MAB = tam giác MDC (cạnh - góc - cạnh) (đpcm)
b) Chứng minh DC vuông góc AC
Ta có góc BAC = 90 độ (tam giác ABC vuông tại A)
=> góc A1 + góc A2 = 90 độ
mà góc A1 = góc CDA (do tam giác MAB = tam giác MDC chứng minh trên)
=> góc ADC + góc A2 = 90 độ
Xét tam giác CAD,
có: góc ACD = 180 độ - (góc ADC + góc A2) = 180 độ - 90 độ = 90 độ
=> góc ACD = 90 độ
=> tam giác DAC vuông tại C
Ta có DC vuông góc AC tại C
và BA vuông góc AC tại A
=> BA // DC (đpcm)
c) AM = 1/2BC
Câu này áp dụng định lý: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => AM = 1/2 BC (đpcm)
Còn nếu yêu cầu phải trình bày cách làm, thì bạn làm như phía dưới:
Xét tứ giác ABDC có:
- BA = CD (do tam giác MAB = tam gia MDC (chứng minh trên)
- DC // BA
=> tứ giác ABDC là hình bình hành
và có góc A vuông
=> tứ giác ABDC là hình chữ nhật
=> 2 đường chéo của hình chữ nhật là AD = BC
mà M là trung điểm của AD và BC
=> AM = 1/2 BC (đpcm)
Ta có hình vẽ sau:
A B C D M 1 2
GT: ΔABC ; \(\widehat{A}\) = 90o
MB = MC ; MA = MD
KL: a) ΔAMB = DMC
a) Xét ΔAMB và ΔDMC có:
MA = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác và cũng là đường cao
b: Ta có: AB=CD
mà AB=AC
nên CD=AC
=>ΔACD cân tại C
mà CM là đường cao
nên M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
A B C M D
Vì M là trung điểm của AD
=> BM = DM
AM = CM
Xét tam giác AMB và tam giác DMC có :
BM = DM ( cmt )
\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )
AM = CM ( cmt )
=> Tam giác AMB = tam giác DMC ( c-g-c )
b) Vì tam giác AMB = tam giác DMC ( cmt )
\(\Rightarrow\widehat{BAM}=\widehat{MDC}\) ( 2 góc tương ứng )
Mà 2 góc này lại ở vị trí so le trong
=> BA // DC
Vì \(BA\perp DC\)
\(\Rightarrow DC\perp AC\)
c) Xét tam giác ADM và tam giác DCM có :
BA = DC ( cmt )
\(\widehat{BAC}=\widehat{DCA}=90^o\)
DM cạnh chung
=> tam giác ADM = tam giác DCM ( c-g-c )
\(\Rightarrow AD=BC\)
\(\Rightarrow2AM=BC\)
\(AM=\frac{1}{2}BC\)
\(\Rightarrowđpcm\)
c: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=BC/2