K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

A B C M D 1 2

Xét ∆ABM và ∆CDM có : 

AM = MC (gt)

\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )

BM = MD (gt)

=> ∆ABM = ∆CDM (c - g - c)

b ) Theo a ) ∆ABM = ∆CDM => \(\widehat{BAM}=\widehat{DCM}\) ( cạnh T/Ư ) Mà lại ở vị trí SLT => AB // CD 

a) Xét ΔABM và ΔCDM có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔABM=ΔCDM(c-g-c)

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(gt)

nên \(\widehat{MCD}=90^0\)

\(\Leftrightarrow\widehat{ACD}=90^0\)

hay AC\(\perp\)CD(Đpcm)

5 tháng 12 2021

đpcm là j vậy bạn

 

https://olm.vn/hoi-dap/detail/67802117915.html

Bạn vào link này xem nhé

Học tốt!!!!!!!

27 tháng 3 2020

M A B C D

a) Xét tam giác ABM và CDM có : 

MA = MC ( gt ) 

MB = MD ( gt ) 

Góc AMB = góc CMD ( đối đỉnh ) 

=> tam giác ABM = tam giác CDM ( c - g - c ) => đpcm

b) Tam giác ABM = tam giác CDM 

=> góc BAM  = góc DCM 

=> AB // CD ( so le )

c) Ta có : 

BE =AB 

=> B là trung điẻm AE

  M là trung điểm AC 

=> BM là đường trung bình tam giác ACE 

=> BM = 1/2 .EC ( đpcm ) 

11 tháng 2 2018

|a-c|<3;|b-c|<2 CMR:|a-b|<5

30 tháng 5 2018

a/ \(\Delta ABM\)và \(\Delta CDM\)có:

BM = DM (gt)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

AM = CM (M là trung điểm AC)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c) (đpcm)

b/ Ta có \(\Delta ABM\)\(\Delta CDM\)(cm câu a)

=> \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng) ở vị trí so le trong

=> AB // CD (đpcm)

16 tháng 12 2017

a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

b) Ta có  \(\Delta ABM\)\(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)

=> AB // CD (đpcm)

28 tháng 11 2021
S/fffffffffdsbdhdjndbdbdbfbfbdbbdbdbfndndndbfnfnfnfnfnfn

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

DO đó; ΔABM=ΔCDM

b: Xét tứ giác ABCD có 

M là trung điểm của AC
M là trung điểm của BD

Do đó:ABCD là hình bình hành

Suy ra: AB//CD