Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABM và ΔCDM có
MA=MC(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD(gt)
Do đó: ΔABM=ΔCDM(c-g-c)
b) Ta có: ΔABM=ΔCDM(cmt)
nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(gt)
nên \(\widehat{MCD}=90^0\)
\(\Leftrightarrow\widehat{ACD}=90^0\)
hay AC\(\perp\)CD(Đpcm)
https://olm.vn/hoi-dap/detail/67802117915.html
Bạn vào link này xem nhé
Học tốt!!!!!!!
M A B C D
a) Xét tam giác ABM và CDM có :
MA = MC ( gt )
MB = MD ( gt )
Góc AMB = góc CMD ( đối đỉnh )
=> tam giác ABM = tam giác CDM ( c - g - c ) => đpcm
b) Tam giác ABM = tam giác CDM
=> góc BAM = góc DCM
=> AB // CD ( so le )
c) Ta có :
BE =AB
=> B là trung điẻm AE
M là trung điểm AC
=> BM là đường trung bình tam giác ACE
=> BM = 1/2 .EC ( đpcm )
a/ \(\Delta ABM\)và \(\Delta CDM\)có:
BM = DM (gt)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
AM = CM (M là trung điểm AC)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c) (đpcm)
b/ Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a)
=> \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng) ở vị trí so le trong
=> AB // CD (đpcm)
a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
b) Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)
=> AB // CD (đpcm)
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
DO đó; ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AB//CD
A B C M D 1 2
Xét ∆ABM và ∆CDM có :
AM = MC (gt)
\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )
BM = MD (gt)
=> ∆ABM = ∆CDM (c - g - c)
b ) Theo a ) ∆ABM = ∆CDM => \(\widehat{BAM}=\widehat{DCM}\) ( cạnh T/Ư ) Mà lại ở vị trí SLT => AB // CD