Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) DM là đường phân giác của ΔABM nên theo tính chất đường phân giác của tam giác ta có:
Tương tự EM là đường phân giác ΔACM nên:
Mà MB = MC nên từ (1) và (2) suy ra
a, Vì MD là phân giác AMB \(\Rightarrow\frac{AD}{AM}=\frac{BD}{BM}\)\(\Rightarrow\frac{AD}{BD}=\frac{AM}{BM}\)\(\Rightarrow\frac{AD}{BD}=\frac{AM}{CM}\)(MB = MC)
Vì ME là phân giác AMC \(\Rightarrow\frac{AE}{AM}=\frac{EC}{MC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)
\(\Rightarrow\frac{AE}{EC}=\frac{AD}{BD}\) => DE // BC (định lý Thales đảo)
b, Vì DE // BE (cmt) \(\Rightarrow\frac{DO}{BM}=\frac{AO}{OM}\)(Hệ quả định lý Thales) và \(\frac{OE}{MC}=\frac{OA}{OM}\) (Hệ quả định lý Thales)
\(\Rightarrow\frac{DO}{BM}=\frac{OE}{MC}\)
Mà BM = MC (gt)
=> DO = OE
a) Vì AM là trung tuyến của \(\Delta ABC\Rightarrow BM=CM;M\in BC\)
Xét \(\Delta ABM\)có MD là p/g \(\widehat{BMA}\Rightarrow\frac{AD}{BD}=\frac{AM}{BM}\)hay \(\frac{AD}{BD}=\frac{AM}{CM}\left(1\right)\)
Xét \(\Delta ACM\)có ME là p/g \(\widehat{CMA}\Rightarrow\frac{AE}{CE}=\frac{AM}{CM}\left(2\right)\)
Từ (1)(2)\(\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\Rightarrow DE//BC\)(đ/ lí Ta-lét đảo)
b) Có \(DE//BC\), \(O\in DE,M\in BC\Rightarrow OD//BM;OE//CM\)
Xét \(\Delta ABM\)có \(OD//BM\Rightarrow\frac{OD}{BM}=\frac{OA}{AM}\left(3\right)\)
Xét \(\Delta ACM\)có \(OE//CM\Rightarrow\frac{OE}{CM}=\frac{OA}{AM}\left(4\right)\)
Từ (3)(4) \(\Rightarrow\frac{OD}{BM}=\frac{OE}{CM}\).Mà BM=CM \(\Rightarrow OD=OE\)
a: Xét ΔMAB có MD là phan giác
nên MA/MB=AD/DB=MA/MC
Xét ΔMAC có ME là phân giác
nên MA/MC=AE/EC
=>AD/DB=AE/EC
=>DE//BC
b: Xét ΔAMB có OD//MB
nên OD/MB=AO/AM
Xét ΔAMC có OE//MC
nên OE/MC=AO/AM
=>OD/MB=OE/MC
mà MB=MC
nên OD=OE
a: \(BM=\sqrt{6^2+8^2}=10\left(cm\right)\)
MD là phân giác
=>BD/BM=DA/AM
=>BD/5=DA/3=(BD+DA)/(5+3)=8/8=1
=>BD=5cm; DA=5cm
b: Xét ΔMBC cóME là phân giác
nên BE/EC=BM/MC=BM/MA=BD/DA
=>DE//AC
a) Xét ΔABM vuông tại A có:
\(BA^2+AM^2=BM^2\)(Theo Py-ta-go)
=> BM = 10(cm)
Vì MD là tia phân giác của góc BMA nên \(\frac{AM}{BM}=\frac{AD}{BD}\)
=> \(\frac{BD}{BM}=\frac{AD}{AM}=\frac{AD+BD}{BM+AM}=\frac{AB}{10+6}=\frac{8}{16}=\frac{1}{2}\)
=> BD = 1/2.BM = 1/2.10 = 5(cm)
b) Vì ME là tia phân giác của góc BMC nên \(\frac{BM}{MC}=\frac{BE}{EC}\)
Vì BM là trung tuyến của ΔABC nên MA = MC
Lại có \(\frac{BM}{AM}=\frac{BD}{AD}\)
Do đó \(\frac{BD}{AD}=\frac{BE}{EC}=\frac{AM}{BM}=\frac{CM}{BM}\)
=> DE // AC