K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

Bn tham khảo link nài nha :

https://olm.vn/hoi-dap/detail/54150812747.html

~Study well~

#KSJ

Ta có:\(A=\frac{1}{2}\cdot\frac{3}{4}\cdot...\cdot\frac{79}{80}\Rightarrow A< \frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{80}{81}\)

\(\Leftrightarrow A^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{79}{80}\cdot\frac{80}{81}=\frac{1}{81}=\left(\frac{1}{9}\right)^2\)

\(\Leftrightarrow A< \frac{1}{9}\)

Nhớ tk mk nha!

12 tháng 2 2016

Ta đặt B=\(\frac{2}{3}.\frac{4}{5}...\frac{80}{81}\)

Mà \(\frac{1}{2}<\frac{2}{3};\frac{3}{4}<\frac{4}{5};...;\frac{79}{80}<\frac{80}{81}\)

=>A<B

=>A2<AB=\(\frac{1}{2}.\frac{2}{3}.....\frac{80}{81}=\frac{1}{81}\)

=>A2<\(\frac{1}{81}\)

=>A<\(\sqrt{\frac{1}{81}}=\frac{1}{9}\)(đpcm)

5 tháng 2 2016

http://olm.vn/hoi-dap/question/419438.html

12 tháng 7 2019

\(C< \frac{2}{3}.\frac{4}{5}......\frac{80}{81}\Rightarrow C.C< \frac{C.2....80}{3.5....81}=\frac{1.2.3....79.80}{2.3.4....81}=\frac{1}{81}=\left(\frac{1}{9}\right)^2mà:C>0\Rightarrow C< \frac{1}{9}\)

12 tháng 7 2019

Shitbo ơi em có thể giải theo cách cấp 1 được không?

Câu hỏi của Lê Thị Minh Trang - Toán lớp 6 - Học toán với OnlineMath

Xem bài 1 nhé !

Bài 1:

Xét vế phải :

\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}\)\(-1=2\)\(\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left(\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)

Đẳng thức được chứng tỏ là đúng

Bài 2 :

Đặt \(A'=\frac{3}{4}.\frac{4}{5}.\frac{7}{8}...\frac{4999}{5000}\)

Rõ ràng \(A< A'\)

SUY RA \(A^2< AA'=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)

Nên \(A< \frac{1}{50}=0,02\)

Chúc bạn học tốt ( -_- )

14 tháng 3 2018

ta có 1/2 * 3/ 4 * 5/6 *... * 79/80 = 0.0889

so sánh a với 1/9 

0.0889  < 0.(1)

=> A < 1/9