K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{3}{10}>\dfrac{3}{15}\)

\(\dfrac{3}{11}>\dfrac{3}{15}\)

\(\dfrac{3}{12}>\dfrac{3}{15}\)

\(\dfrac{3}{13}>\dfrac{3}{15}\)

\(\dfrac{3}{14}>\dfrac{3}{15}\)

Do đó: \(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}=1\)

hay 1<S(1)

Ta có: \(\dfrac{3}{11}< \dfrac{3}{10}\)

\(\dfrac{3}{12}< \dfrac{3}{10}\)

\(\dfrac{3}{13}< \dfrac{3}{10}\)

\(\dfrac{3}{14}< \dfrac{3}{10}\)

Do đó: \(\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}=\dfrac{12}{10}\)

\(\Leftrightarrow S< \dfrac{15}{10}=\dfrac{3}{2}< 2\)(2)

Từ (1) và (2) suy ra 1<S<2(đpcm)

28 tháng 4 2021

thank you

 

9 tháng 4 2017

\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

\(S=\left(\dfrac{3}{10}+\dfrac{3}{12}+\dfrac{3}{14}\right)+\left(\dfrac{3}{11}+\dfrac{3}{13}\right)\)

Đến bước trên thì do mình lười đánh máy nên bạn tính trong ngoặc bằng máy tính thì sẽ ra kết quả dưới đây (làm tắt):

\(S=\dfrac{107}{140}+\dfrac{72}{143}\)

Bước này phải quy đồng nhé! Ra số hơi dài nhưng phải chịu thôi bạn!

\(S=1,267782218\)

\(1< 1,267782218< 2\)

Suy ra \(1< S< 2\)

Suy ra Điều phải chứng minh.

Xong rồi bạn, tick ''Đúng'' cho mình nhé!

23 tháng 4 2017

Bạn ghi lộn đề rồi: mẫu số á phải là: 10+11+12+13+14 chứ 13 bạn không có nha!

Ta có: 3/15+3/15+3/15+3/15+3/15<3/10+3/11+3/12+3/13+3/14<3/9+3/9+3/9+3/9+3/9

Suy ra: 15/15<S<15/9

15/1<S<5/3

Vì: 5/3<2

Suy ra: 1<S<2

*Nhớ tick cho mình nha cảm ơn bạn nhiều!!!! oaoa

24 tháng 4 2017

Mình ghi đúng đề mà

23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)

5 tháng 8 2018

2)

S = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\)

S = 3 . (\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\))

S = 1 . (\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{43.46}\))

S = 1 . (\(1-\dfrac{1}{4}+...+\dfrac{1}{43}-\dfrac{1}{46}\))

S = 1 . (\(1-\dfrac{1}{46}\))

S = 1 . \(\dfrac{45}{46}\)

S = \(\dfrac{45}{46}\)

=> \(\dfrac{45}{46}\) < 1

Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)

Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)

Từ (1) và (2) suy ra đpcm.

1 tháng 4 2022

Hay quá

 

4 tháng 5 2017

Ta có :

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét :

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{2}\rightarrowđpcm\)

7 tháng 3 2017

Ta có: \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+...+\dfrac{11}{5^{12}}\)

\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+...+\dfrac{11}{5^{11}}\)

\(\Rightarrow5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)

\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)

\(\Rightarrow20A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)

\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)

\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)

\(\Rightarrow A< \dfrac{1}{16}\)

22 tháng 1 2018
Ta có: A=152+253+...+11512A=152+253+...+11512

⇒5A=15+252+...+11511⇒5A=15+252+...+11511

⇒5A−A=15+152+...+1511−11512⇒5A−A=15+152+...+1511−11512

⇒4A=15+152+...+1511−11512⇒4A=15+152+...+1511−11512

⇒20A=1+15+...+1510−11511⇒20A=1+15+...+1510−11511

⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)

⇒16A=1−12511+11512<1⇒16A=1−12511+11512<1

⇒A<116⇒A<116

leuleu
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé