K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

Bạn tự vẽ hình nha

a, vì NM=NE nên góc NEM=NME 1 mà xx' song song với yy' nên xME = MEN 2

Từ 1,2 xME=EMN. Tương tự NEF = xMF

b, theo câu a ME MF là tia p/g nên xMN+ NMx = 180 độ nên EMF = 90 độ nên tam giác MEF vuông tại M

a: ΔNME cân tại N

nên góc NEM=góc NME

=>góc NME=góc xME

=>ME là phân giác của góc xMN

ΔNMF cân tại N

nên góc NMF=góc NFM

=>góc NMF=góc xMF

=><MF là phân giác của góc xMN

b: Xét ΔMEF có

MN là trung tuyến

MN=EF/2

Do đó;ΔMEF vuông tại M

a: ΔNEM cân tại N

nên góc NME=góc NEM

=>góc xME=góc nME

=>ME là phân giác của góc xMN

ΔNMF cân tại N

=>góc NMF=góc NFM

=>góc NMF=góc x'MF

=>MF là phân giác của góc x'MN

b: Xet ΔMEF có

MN là trung tuyến

MN=EF/2

Do đó: ΔMEF vuông tại M

a, Nếu tia At không cắt yy'

=> At // yy'

=> At trung với Ax (vì xx' // yy')

Mà At là phân giác góc xAb

=> At nằm giữa Ax và AB

=> At không trùng Ax

=> At cắt yy'

b, 

Bạn xem lại đề. C ở đâu vậy?

8 tháng 12 2017

Giải

a) Vì Ot là phân giác của ˆxOyxOy^

nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^

Ot' là phân giác của ˆxOy′xOy′^

nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)

mà (ˆxOyxOy^ + ˆxOy′xOy′^) =  180(2 góc kề bù)

=>  ˆxOtxOt^ + ˆxOt′xOt′^ = 12121800   900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^,  ˆx′Oyx′Oy^  thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.

8 tháng 12 2017

a) Vì Ot là phân giác của ˆxOyxOy^
nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^
Ot' là phân giác của ˆxOy′xOy′^
nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)
mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 180
0
(2 góc kề bù)
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212180
0 = 90
0
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông
b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'
Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy
=> M cách đều xx',yy'
M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'
=> M cách đều xx',yy'
c) M cách đều hai đường thẳng xx', yy'
Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'
d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0
e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo
bởi hai đường thẳng cắt nhau đó.