Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk nghĩ đề câu 1 là chứng minh 215+211 chia hết cho 17.
Đây là cách giải của mk:
215+211= 211(24+1)= 211(16+1)= 211.17 chia hết cho 17.
=> 215+211 chia hết cho 17.
\(A=1+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+...+2^{2019}\)
\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)
\(\Rightarrow A+1\)là một lũy thừa
đpcm
ta có A=2+2^2+2^3+2^4+2^5+2^6+.....+2^58+2^59+2^60
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
A=14+2^3.(2+2^2+2^3)+.....+2^57.(2+2^2+2^3)
A=14+2^3.14+...+2^57.14
A=14.(1+2^3+...+2^57)\(⋮\)14
=> ĐPCM
\(Tacó:\left(2+2^2\right)\cdot\left(2^3+2^4\right)\cdot...\cdot\left(2^{59}+2^{60}\right)\)
\(A=6\cdot\left(2^3+2^4\right)\cdot...\cdot\left(2^{59}+2^{60}\right)\)
A \(⋮\)6 do A \(\div\)6 \(\times\)6=A
- Xét \(A⋮2\)
Ta có :\(A=2+2^2+2^3+....+2^{60}\)
\(=2.\left(1+2+2^2+.....+2^{59}\right)\)
Vì \(2⋮2;\left(1+2+2^2+....+2^{59}\right)\inℕ^∗\)
Nên \(2.\left(1+2+2^2+....+2^{59}\right)⋮2\)
Do đó : \(A⋮2\) \(\left(1\right)\)
- Xét \(A⋮3\)
Ta có : \(A=2+2^2+2^3+.....+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+.....+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+.....+2^{59}\left(1+2\right)\)
\(=2.3+2^3.3+2^5.3+.....+2^{59}.3\)
\(=3.\left(2+2^3+2^5+....+2^{59}\right)\)
Vì \(3⋮3;\left(2+2^3+2^5+....+2^{59}\right)\inℕ^∗\)
Nên \(3.\left(2+2^3+2^5+....+2^{59}\right)⋮3\) \(\left(2\right)\)
Từ (1) và (2), kết hợp với \(2.3=6;\left(2,3\right)=1\) suy ra \(A⋮6\) \(\left(đpcm\right)\)
a, Tính 2S rồi S=2S-S= 261-2
b, nhóm 2 số rồi t/c phân phối được chia hết cho 3
nhóm 3 số rồi t/c phân phối được chia hết cho 7
nhóm 4 số rồi t/c phân phối được chia hết cho 15
nhóm 5 số rồi t/c phân phối được chia hết cho 31
nhóm 6 số rồi t/c phân phối được chia hết cho 63
nhóm 7 số rồi t/c phân phối được chia hết cho 127
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Hoàng Phi 6 - Toán lớp 6 - Học toán với OnlineMath
\(A=1+3+3^2+.....+3^{11}\)
\(A=\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)
\(A=\left(3^0.1+3^0.3+3^0.3^2\right)+....+\left(3^9.1+3^9.3+3^9.3^2\right)\)
\(A=1.\left(1+3+3^2\right)+....+3^9\left(1+3+3^2\right)\)
\(A=1.13+....+3^9.13\)
\(A=13.\left(1+....+3^9\right)⋮13\left(đpcm\right)\)
=2.(1+2+22)+...+258.(1+2+23)
A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7
Vây bạn tick mình nhé
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
A=(2+22+23+24)+(257+258+259+260)
A=2(1+2+22+23)+...+257(1+2+22+23)
A=(1+2+22+23)(1+...+257)=15(1+...+257)⋮15