K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

A=(2+22+23+24)+(257+258+259+260)

A=2(1+2+22+23)+...+257(1+2+22+23)

A=(1+2+22+23)(1+...+257)=15(1+...+257)⋮15

9 tháng 11 2018

Câu 1 )215-211 không chia hết cho 17 bạn ạ

9 tháng 11 2018

Mk nghĩ đề câu 1 là chứng minh 215+211 chia hết cho 17.

Đây là cách giải của mk:

215+211= 211(24+1)= 211(16+1)= 211.17 chia hết cho 17.

=> 215+211 chia hết cho 17.

10 tháng 8 2018

\(A=1+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+...+2^{2019}\)

\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)

\(A=2^{2019}-1\)

\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)

\(\Rightarrow A+1\)là một lũy thừa

                            đpcm

10 tháng 8 2018

mạo phép chỉnh đề

\(A=1+2+2^2+2^3+...+2^{2018}\)

=> \(2A=2+2^2+2^3+2^4+....+2^{2019}\)

=>  \(2A-A=\left(2+2^2+2^3+2^4+...+2^{2019}\right)-\left(1+2+2^2+2^3+....+2^{2018}\right)\)

=>  \(A=2^{2019}-1\)

=>  \(A+1=2^{2019}\)

Vậy  A+ 1 là một lũy thừa

19 tháng 10 2018

ta có A=2+2^2+2^3+2^4+2^5+2^6+.....+2^58+2^59+2^60

A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)

A=14+2^3.(2+2^2+2^3)+.....+2^57.(2+2^2+2^3)

A=14+2^3.14+...+2^57.14

A=14.(1+2^3+...+2^57)\(⋮\)14

=> ĐPCM

19 tháng 10 2018

chia hết cho 2 và7 nhóm lại sẽ chia hết cho 7

22 tháng 12 2018

\(Tacó:\left(2+2^2\right)\cdot\left(2^3+2^4\right)\cdot...\cdot\left(2^{59}+2^{60}\right)\)

\(A=6\cdot\left(2^3+2^4\right)\cdot...\cdot\left(2^{59}+2^{60}\right)\)

\(⋮\)6 do A \(\div\)\(\times\)6=A

22 tháng 12 2018

-  Xét \(A⋮2\)

Ta có :\(A=2+2^2+2^3+....+2^{60}\)

\(=2.\left(1+2+2^2+.....+2^{59}\right)\)

Vì \(2⋮2;\left(1+2+2^2+....+2^{59}\right)\inℕ^∗\)

Nên \(2.\left(1+2+2^2+....+2^{59}\right)⋮2\)

Do đó : \(A⋮2\)          \(\left(1\right)\)

- Xét \(A⋮3\)

Ta có : \(A=2+2^2+2^3+.....+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+.....+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+.....+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+2^5.3+.....+2^{59}.3\)

\(=3.\left(2+2^3+2^5+....+2^{59}\right)\)

Vì \(3⋮3;\left(2+2^3+2^5+....+2^{59}\right)\inℕ^∗\)

Nên \(3.\left(2+2^3+2^5+....+2^{59}\right)⋮3\)            \(\left(2\right)\)

Từ (1) và (2), kết hợp với \(2.3=6;\left(2,3\right)=1\) suy ra  \(A⋮6\)      \(\left(đpcm\right)\)

19 tháng 2 2019

\(A=2+2^2+2^3+...+2^{2019}\)

\(2A=2^2+2^3+2^4+...+2^{2020}\)

\(A=2^{2020}-2\)

21 tháng 3 2018

a, Tính 2S rồi S=2S-S= 261-2

b, nhóm 2 số rồi t/c phân phối được chia hết cho 3

nhóm 3 số rồi t/c phân phối được chia hết cho 7

nhóm 4 số rồi t/c phân phối được chia hết cho 15

nhóm 5 số rồi t/c phân phối được chia hết cho 31

nhóm 6 số rồi t/c phân phối được chia hết cho 63

nhóm 7 số rồi t/c phân phối được chia hết cho 127

19 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Hoàng Phi 6 - Toán lớp 6 - Học toán với OnlineMath

6 tháng 5 2019

\(A=1+3+3^2+.....+3^{11}\)

\(A=\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)

\(A=\left(3^0.1+3^0.3+3^0.3^2\right)+....+\left(3^9.1+3^9.3+3^9.3^2\right)\)

\(A=1.\left(1+3+3^2\right)+....+3^9\left(1+3+3^2\right)\)

\(A=1.13+....+3^9.13\)

\(A=13.\left(1+....+3^9\right)⋮13\left(đpcm\right)\)

6 tháng 5 2019

Cảm ơn bạn nhé!

18 tháng 10 2015

=2.(1+2+22)+...+258.(1+2+23)

A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7

Vây bạn tick mình nhé

29 tháng 11 2016

1.

\(A=7+7^2+7^3+...+7^{78}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)

\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)

\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8

Vậy A chia hết cho 8 (đpcm)

 

 

29 tháng 11 2016

\(A=3+3^2+3^3+...+3^{155}\)

\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)

\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)

\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121

Vậy A chia hết cho 121 (đpcm)