K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

a) Để (x + 1)(x - 2) < 0 thì ta có 2 trường hợp

Th1 : (x + 1) < 0 ; (x - 2) > 0 => x < -1 ; x > 2 (vô lí)

Th2 : (x + 1) > 0 ; (x - 2) < 0 => x > -1 ; x < 2 => -1 < x < 2

Vậy x thuộc {0;1}

b) Để \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)  thì sảy ra 2 trường hợp

Th1 : (x - 2) > 0 ; \(\left(x+\frac{2}{3}\right)>0\) => x > 2 ; \(x>-\frac{2}{3}\) => x > 2

Th2 :  (x - 2) < 0 ; \(\left(x+\frac{2}{3}\right)< 0\) => x < 2 ; \(x< -\frac{2}{3}\) => \(x< -\frac{2}{3}\)

Vậy ...........................

7 tháng 9 2017

a,  (x+1)(x-2)<0

th1 (x+1)>0                       x>-1

      (x-2)<0   =>                x<2 

=>  -1<x<2

TH2

      (x+1)<0

      (x-2)>0

ko xảy ra vì với mọi x nếu x-2>0=>x+1>0

19 tháng 7 2015

a; đề ( x + 1)(x - 2) < 0 khi và chỉ khi :

 (+) TH1 x + 1 < 0 và x - 2> 0 

=> x < -1 và x > 2 

=> 2 < x <-1 (loại)

(+) Th2 : x + 1 > 0 và x-  2< 0 

=> x> -1 và x < 2 

=>-1 < x < 2 ( Tm)

VẬy -1 < x < 2 thì ( x+1)(x- 2) < 0 

9 tháng 1 2018

a) \(A=5-3.\left(3x-1\right)^2=-\left[3\left(3x-1\right)^2-5\right]\)

Ta có: \(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow3.\left(3x-1\right)^2\ge0\)

\(\Rightarrow3\left(3x-1\right)^2-5\ge-5\forall x\)

\(\Rightarrow-\left[3\left(3x-1\right)^2-5\right]\ge5\forall x\)

Vậy \(MinA=5\Leftrightarrow x=\dfrac{1}{3}\)

7 tháng 8 2017

Bạn ghi ra nhiều vậy người khác nhìn rối mắt không trả lời được đâu ghi từng bài ra thôi

Mình chỉ làm được vài bài thôi, kiến thức có hạn :>

Bài 1:

Câu a và c đúng

Bài 2: 

a) |x| = 2,5

=>x = 2,5 hoặc 

    x = -2,5

b) |x| = 0,56

=>x = 0,56

    x = - 0,56

c) |x| = 0

=. x = 0

d)t/tự

e) |x - 1| = 5

=>x - 1 = 5

    x - 1 = -5

f) |x - 1,5| = 2

=>x - 1,5 = 2

    x - 1,5 = -2

=>x = 2 + 1,5

    x = -2 + 1,5

=>x = 3,5

    x = - 0,5

các câu sau cx t/tự thôi

Bài 3: Ko hỉu :)

Bài 4: Kiến thức có hạn :)

28 tháng 9 2018

a)\(\left(x+1\right)\left(x-5\right)< 0\) khi \(\left(x+1\right)\) và \(\left(x-5\right)\) trái dấu.

Chú ý rằng: \(x+1>x-5\) nên \(x+1>0,x-5< 0\). Giải cả hai trường hợp ta có:

\(\hept{\begin{cases}x+1>0\\x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 5\end{cases}}\Leftrightarrow-1< x< 5}\)

b) \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\) khi \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) đồng dấu (\(x-2\ne0,\left(x+\frac{5}{7}\right)\ne0\Leftrightarrow x\ne2;x\ne-\frac{5}{7}\)

+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) dương thì ta có:\(x-2< x+\frac{5}{7}\). Có 2 TH

 \(\hept{\begin{cases}x-2>0\\x+\frac{5}{7}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-\frac{5}{7}\end{cases}}}\) . Dễ thấy để thỏa mãn cả hai trường hợp thì x > 2  (1)

+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) âm thì ta có: \(x-2< x+\frac{5}{7}\). Có 2 TH

\(\hept{\begin{cases}\left(x-2\right)< 0\\\left(x+\frac{5}{7}\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -\frac{5}{7}\end{cases}}}\). Dễ thấy để x thỏa mãn cả hai trường hợp thì \(x< -\frac{5}{7}\) (2)

Từ (1) và (2) ta có: \(\hept{\begin{cases}x>2\\x< -\frac{5}{7}\end{cases}}\) thì \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\)