Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+x(6-2x) = 3x(x+1)-4(x^2-1)
x^2+6x-2x^2=3x^2-4x^2+4
6x-x^2=4-x^2
6x=4
x=3/2
ta có x^2 +x(6-2x) = 3x(x+1)-4(x^2-1)
hay: x^2+6x-2x^2=3x^2+3x-4x^2+4
=> x^2 + 6x -2x^2 - 3x^2 - 3x +4x -4 =0
=>3x - 4 = 0
=>3x=4
=>x=4/3
1,A=(x2-6x+9)+2
=(x-3)2+2
ta thấy (x-3)2>=0 với mọi x
=>(x-3)2+2>=2 với mọi x
hay A>=2
dấu "="xảy ra x-3=0<=>x=3
vậy MinA=2 khi x=3
ý b sai đầu bài bạn nhé
C=-(x2-5x)
=-(x2-5x+25/4)+25/4
=-(x-5/2)2+25/4
ta thấy -(x-5/2)2<=0 với mọi x
=>-(x-5/2)2+25/4 <=25/4 với mọi x
hay C<=25/4
dấu "=" xảy ra khi x-5/2=0<=>x=5/2
vậy MaxC=25/4 khi x=5/2
k mk nha
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN
a) A = 5x2 - 20x + 2020 = 5(x2 - 4x + 4) + 2000 = 5(x - 2)2 + 2000 \(\ge\)2000 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MinA = 2000 khi x = 2+
b) B = -3x2 - 6x + 15 = -3(x2 + 2x + 1) + 18 = -3(x + 1)2 + 18 \(\le\)18 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MaxB = 18 khi x = -1
c) C = 9x2 + 2x + 7 = (9x2 + 2x + 1/9) + 62/9 = (3x + 1/3)2 + 62/9 \(\ge\)62/9 \(\forall\)x
Dấu "=" xảy ra <=> 3x + 1/3 = 0 <=> x = -1/9
Vậy MinC = 62/9 khi x = -1/9
d) D = 16 - 2x2 - 8x = -2(x2 + 4x + 4) + 24 = -2(x + 2)2 + 24 \(\le\) 24 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy MaxD = 24 khi x = -2
\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)
\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)
Vậy MaxA=5 khi x=1
\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)
Vậy MaxB=4 khi x=2
a) \(4-x^2+2x\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(\left(x-1\right)^2-5\right)\)
\(=5-\left(x-1\right)^2\ge5\)
MIn A = 5 khi \(x-1=0=>x=1\)
b) \(4x-x^2\)
\(=-\left(x^2-4x+4-4\right)\)
\(=>-\left(\left(x-2\right)^2-4\right)\)
\(=4-\left(x-2\right)\ge4\)
MIN B = 4 khi \(x-2=0=>x=2\)
Ủng hộ nha tối rồi
a) 5x2 - 8x + 5
= 5(x2 - 8/5.x + 1)
= 5(x2 -2.4/5.x + 16/25 + 1 - 16/25)
= 5[(x-4/5)2 + 9/25]
= 5.(x-4/5)2 + 9/5 >= 9/5. Dấu "=" xảy ra <=> x = 4/5. Vậy....
Còn lại tương tự nha bạn
TL:
a) \(5x^2-8x+5\)
\(=4x^2-8x+4+x^2+1=\left(2x-2\right)^2+x^2+1\)
Ta có : \(\left(2x-2\right)^2+x^2+1\ge1\forall x\in R\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2\right)^2=0\) và \(x^2=0\)
\(\Leftrightarrow x=1\) và x=0
Vậy GTNN của BT =1 tại....
b) \(4x^2+6x+15=4x^2+6x+\frac{9}{4}+\frac{51}{4}\)
\(=\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\)
Ta có: \(\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\forall x\in R\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+\frac{3}{2}\right)^2=0\Leftrightarrow2x=\frac{-3}{2}\Leftrightarrow x=\frac{-3}{4}\)
Vậy GTNN của BT =\(\frac{51}{4}\) tại \(x=\frac{-3}{4}\)
Bài 1 :
a) \(A=x^2-6x+11\)
\(A=x^2-2\cdot x\cdot3+3^2+2\)
\(A=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
b) \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x-\frac{1}{2}\right)\)
\(B=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(B=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=\frac{-5}{2}\)
c) \(C=5x-x^2\)
\(C=-\left(x^2-5x\right)\)
\(C=-\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]\)
\(C=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)
\(C=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\le\frac{25}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Bài 2 :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[x+\left(y+z\right)\right]^3-x^3-y^3-z^3\)
\(=x^3+3x^2\left(y+z\right)+3x\left(y+z\right)^2+\left(y+z\right)^3-x^3-y^3-z^3\)
\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+y^3+3y^2z+3yz^2+z^3-y^3-z^3\)
\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+3yz\left(y+z\right)\)
\(=3\left(y+z\right)\left[x^2+x\left(y+z\right)+yz\right]\)
\(=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=3\left(y+z\right)\left(x+y\right)\left(x+z\right)\)