Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ĐKXĐ: \(y\ne4\)
Đặt \(y-4=x\)
\(1+\frac{45}{x^2}=\frac{14}{x}\Leftrightarrow x^2-14x+45=0\Rightarrow\left[{}\begin{matrix}x=9\\x=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y-4=9\\y-4=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=13\\y=9\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne1\)
Đặt \(x-1=y\)
\(\frac{5}{y}-\frac{4}{3y^2}=3\Leftrightarrow9y^2=15y-4\)
\(\Leftrightarrow9y^2-15y+4=0\Rightarrow\left[{}\begin{matrix}y=\frac{4}{3}\\y=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{4}{3}\\x-1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=\frac{4}{3}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne5\)
\(\Leftrightarrow2x-5=3x-15\)
\(\Leftrightarrow x=10\)
d/ ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow2\left(x^2-12\right)=2x^2+3x\)
\(\Leftrightarrow3x=-24\Rightarrow x=-8\)
e/ ĐKXĐ: \(x\ne2\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=1\end{matrix}\right.\)
f/ DKXĐ: \(x\ne-\frac{1}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=8\)
\(\Leftrightarrow4x^2-1=8\)
\(\Leftrightarrow x^2=\frac{9}{4}\Rightarrow x=\pm\frac{3}{2}\)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))