K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

1) Ta có: 
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz 
= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz). 

31 tháng 12 2017

Câu 2:

\(\frac{x^2-y^2+6x+9}{x+y+3}\)

\(=\frac{x^2-y^2+x^2+6x+9-x^2}{x+y+3}\)

\(=\frac{ \left(x+3\right)^2-y^2}{x+y+3}\)

\(=\frac{\left(x-y+3\right)\left(x+y+3\right)}{x+y+3}\)

\(=x-y+3\)

6 tháng 1 2021

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

7 tháng 8 2016

kí hiệu a l b là a chia hết cho b nhé
 xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1 
tương tự : y-1 l x-1 
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)

+> x=y \(\Rightarrow x^2-1\)\(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé 

7 tháng 8 2016

lm hộ t bài 1 nx

2 tháng 11 2017

bài 1:

a) (x+1)^2-(x-1)^2-3(x+1)(x-1)

=(x+1+x-1)(x+1-x+1)-3x^2-3

=2x^2-3x^2-3

=-x^2-3

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^