K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Tham khảo tại link sau : http://olm.vn/hoi-dap/question/721476.html

13 tháng 10 2016

a2+b2+c2=ab+bc+ac

2a2+2b2+2c2=2ab+2bc+2ac

2a^2+2b^2+2c^2-2ab-2bc-2ac=0

(a-b)2+(a-c)2+(b-c)2=0

=> a=b=c

 k co mình cái

11 tháng 6 2017

Ta có:
   a3 + b3 + c3 - 3abc
= (a + b)3 + c3 - 3ab(a + b) - 3abc
= (a + b + c)3 - 3(a + b)c(a + b + c) - 3ab(a + b + c)
= (a + b + c)[(a + b + c)2 - 3(a + b)c - 3ab]
= (a + b + c)(a2 + b2 + c2 + 2ab + 2bc + 2ac - 3ac - 3bc - 3ab)
= (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 3abc - 3abc = 0
=> a + b + c = 0      hay     a2 + b2 + c2 - ab - bc - ac = 0
                                I  => 2(a2 + b2 + c2 - ab - bc - ac) = 0
                                I  => 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
                                I  => (a - b)2 + (b - c)2 + (a - c)2 = 0
                                I  => a - b = 0   hay   b - c = 0   hay   a - c = 0
                                I  => a      = b  I =>  b       = c    I =>  a      = c
                                I  => a = b = c

11 tháng 6 2017

a + b + c = 0 => a + b = -c

=>(a + b)3 = (-c)3

=>a3 + b3 +3a2b + 3ab2 = (-c)3

=>a3 + b3 + c3 +3ab(a + b) = 0

=>a3 + b3 + c= 3abc

18 tháng 8 2017

a)\(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(a-c\right)\)

b)\((a+b)(a^2-b^2)+(b+c)(b^2-c^2)+(c+a)(c^2-a^2)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

c)\(a^2b^2(a-b)+b^2c^2(b-c)+c^2a^2(c-a)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+bc+ca\right)\)

d)\(a^4(b-c)+b^4(c-a)+c^4(a-b)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)

Bài 2: 

\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3ac-3bc=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

13 tháng 5 2016

Cần CM :\(a^2+b^2+c^2-ab-bc-ca\)>=0

<=>\(2\cdot a^2+2\cdot b^2+2\cdot c^2-2ab-2bc-2ca\)>=0(1)

ta có \(2a^2+2b^2+2c^2-2ab-2bc-2ca\)=\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\)

=\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2>=0\) =>(1) (luôn đúng)

vậy suy ra đpcm

Dấu = khi a=b=c

13 tháng 5 2016

Ta có ( a - b - c )2 >= 0

= ( a-b )2 - 2(a-b)c + c>= 0

= a2 - 2ab + b2 - 2ac + 2bc + c2 >= 0

= a2 + b2 + c2 - 2 ( ab - bc + ac ) >=0 (dpcm)

13 tháng 5 2016

\(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0

<=> 2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ac\(\ge\)0

<=> (\(a^2\)-2ab+\(b^2\)) +(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0

<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0

vì \(\left(a-b\right)^2\)\(\ge\)

\(\left(b-c\right)^2\)\(\ge\)0

\(\left(c-a\right)^2\)\(\ge\)0

<=>\(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0

vậy\(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0

dấu = xảy ra khi

a-b=0=>a=b

b-c=0=> b=c

c-a=0=> c=a

=> a=b=c

12 tháng 7 2023

Mày nhìn cái chóa j