Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(5A=5+5^2+...+5^{51}\)
\(\Leftrightarrow4A=5^{51}-1\)
hay \(A=\dfrac{5^{51}-1}{4}\)
Bài 3:
\(S=\left(1^2+2^3+3^3+...+10^2\right)\cdot2=385\cdot2=770\)
Bài 4:
x O y z m n
Giải:
Vì Om là tia phân giác của góc xOz nên:
mOz = 1/2.xOz
Vì On là tia phân giác của góc zOy nên:
zOn = 1/2 . zOy
Ta có: xOz + zOy = 180o ( kề bù )
=> 1/2(xOz + zOy) = 1/2 . 180o
=> 1/2.xOz + 1/2.zOy = 90o
=> mOz + zOn = 90o
=> mOn = 90o (đpcm)
Bài 2:
7^6 + 7^5 - 7^4 = 7^4.( 7^2 + 7 - 1 ) = 7^4 . 55 chia hết cho 55
Vậy 7^6 + 7^5 - 7^4 chia hết cho 55
A = 1 + 5 + 5^2 + ... + 5^50
=> 5A = 5 + 5^2 + 5^3 + ... + 5^51
=> 5A - A = ( 5 + 5^2 + 5^3 + ... + 5^51 ) - ( 1 + 5 + 5^2 + ... + 5^50 )
=> 4A = 5^51 - 1
=> A = ( 5^51 - 1 )/4
4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5
A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)
TH1: x-5>0=>x>5=>2/x-5>0(1)
Th2:x-5<0=>x<5=>2/x-5<0(2)
(1), (2)=>x-5<0(b)
(a),(b)=>x-5=-1=>x=4
vậy A nhỏ nhất là -3
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
Câu 1:
A=0,5-|x-4|
Vì -|x-4|\(\le\)0
Suy ra:0,5-|x-4|\(\le\)0,5
Dấu = xảy ra khi x-4=0;x=4
Vậy Max A=0,5 khi x=4
B=1,25+|5-x|
Vì |5-x|\(\ge\)0
Suy ra:1,25+|5-x|\(\ge\)1,25
Dấu = xảy ra khi 5-x=0;x=5
Vậy Min B=1,25 khi x=5