K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.

Ta có cái này: \(\vec{HG}=\dfrac{2}{3}\vec{HO}\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{3}-3=\dfrac{2}{3}\left(x_O-3\right)\\\dfrac{8}{3}-2=\dfrac{2}{3}\left(y_O-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_O=1\\y_O=3\end{matrix}\right.\Rightarrow O=\left(1;3\right)\)

\(d\left(O;BC\right)=\dfrac{\left|1+2.3-2\right|}{\sqrt{5}}=\sqrt{5}\)

Phương trình trung trực BC: \(2x-y+1=0\)

\(\Rightarrow\) Trung điểm M của BC có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}2x-y+1=0\\x+2y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\Rightarrow M=\left(0;1\right)\)

Lại có \(\vec{AG}=\dfrac{2}{3}\vec{AM}\Rightarrow A=\left(5;6\right)\)

\(\Rightarrow R=OA=5\)

Phương trình đường tròn ngoại tiếp:

\(\left(x-1\right)^2+\left(y-3\right)^2=25\)

3 tháng 8 2022

Cho mk hỏi là phương trình trung trực của BC tính như nào ạ

26 tháng 4 2017


A C B M G

a)Theo bài ra => Tam giác ABC vuông cân ở A

M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm

=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)

Giả sử A có tọa độ (a;b)

=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)

b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC

Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC

=>phương trình đường thẳng BC:

1(x-1)-3(y+1)=0

hay x-3y-4=0

=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)

=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC

MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)

=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)

=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)

=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)

TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)

TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)

c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)

Phương trình đường tròn ngoại tiếp tam giác ABC:

(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)

29 tháng 12 2021

Chọn B

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 3 2017

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

3 tháng 8 2016

gọi K1 là giao điểm của AK với BC. Đầu tiên e chứng minh I là trực tâm của Tam Giác AK1B.

chứng minh tam giác AK1B cân tại K1, rồi suy ra K1M vuông góc vowis AB, suy ra I là trực tâm. rồi e làm như bình thường

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Gọi tọa độ các điểm như sau: \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right),C\left( {{x_C};{y_C}} \right)\)

\(M\left( {2;2} \right),N\left( {3;4} \right),P\left( {5;3} \right)\) lần lượt là trung điểm của các cạnh AB, BC và  CA nên ta có:

\(\left\{ \begin{array}{l}{x_A} + {x_B} = 2{x_M}=4\\{x_A} + {x_C} = 2{x_P}=10\\{x_C} + {x_B} = 2{x_N}=6\\{y_A} + {y_B} = 2{y_M}=4\\{y_A} + {y_C} = 2{y_P}=8\\{y_C} + {y_B} = 2{y_N}=6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 4\\{x_C} - {x_B} = 6\\{x_C} + {x_B} = 6\\{y_A} + {y_B} = 4\\{y_C} - {y_B} = 4\\{y_C} + {y_B} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 4\\{x_B} = 0\\{x_C} = 6\\{y_A} = 3\\{y_B} = 1\\{y_C} = 5\end{array} \right.\)

Vậy các đỉnh của tam giác có tọa độ là \(A\left( {4;3} \right),B\left( {0;1} \right),C\left( {6;5} \right)\)

b)  Gọi \(G\left( {{x_G};{y_G}} \right),G'\left( {{x_{G'}};{y_{G'}}} \right)\) là trọng tâm của hai tam giác ABC và MNP 

Áp dụng tính chất trọng tâm ta có:

\(\begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{4 + 0 + 6}}{3} = \frac{{10}}{3};{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{3 + 1 + 5}}{3} = 3\\{x_{G'}} = \frac{{{x_M} + {x_N} + {x_P}}}{3} = \frac{{2 + 3 + 5}}{3} = \frac{{10}}{3};{y_{G'}} = \frac{{{y_M} + {y_N} + {y_P}}}{3} = \frac{{2 + 4 + 3}}{3} = 3\end{array}\)

Suy ra \(G\left( {\frac{{10}}{3};3} \right)\) và \(G'\left( {\frac{{10}}{3};3} \right)\), tọa độ của chúng bằng nhau nên hai điểm G và G’  trùng nhau (đpcm)

c) Ta có: \(\overrightarrow {AB}  = \left( { - 4; - 2} \right),\overrightarrow {AC}  = \left( {2;2} \right),\overrightarrow {BC}  = \left( {6;4} \right)\)

Suy ra: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{( - 4)}^2} + {{( - 2)}^2}}  = 2\sqrt 5 ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{2^2} + {2^2}}  = 2\sqrt 2 \)

          \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{6^2} + {4^2}}  = 2\sqrt {13} \)

          \(\begin{array}{l}\cos A = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{AB.AC}} = \frac{{( - 4).2 + ( - 2).2}}{{2\sqrt 5 .2\sqrt 2 }} =  - \frac{{3\sqrt {10} }}{{10}} \Rightarrow \widehat A \approx 161^\circ 33'\\\cos B = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{BA.BC}} = \frac{{4.6 + 2.4}}{{2\sqrt 5 .2\sqrt {13} }} = \frac{{8\sqrt {65} }}{{65}} \Rightarrow \widehat B = 7^\circ 7'\\\widehat C = 180^\circ  - \widehat A - \widehat B = 180^\circ  - 161^\circ 33' - 7^\circ 7' = 11^\circ 20'\end{array}\)

20 tháng 5 2017

a) \(G\left(-1;-\dfrac{4}{3}\right);H\left(11;-2\right);I\left(-7;-1\right)\)

b) \(\overrightarrow{IH}=3\overrightarrow{IG}\) suy ra I, G, H thẳng hàng

c) \(\left(x+7\right)^2+\left(y+1\right)^2=85\)