Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau a , xet phuong trinh 1 la 8(x+y) =x^2 +2y^2 + 3xy
ta co , 8(x+y) = x^2 +2xy+y^2 +y^2+xy
8(x+y)= (x+y)^2+y(x+y)
(x+y)((x+y)+y-8)=0 xét (x+y)=0 và (x+2y-8)=0 . xét từng trường hợp rồi thế vào phương trình 2 rồi tự giải lột nhe
cau 2 de kho hieu the , viet lai xem nao sao 2 phong trinh ma bang mot bieu thuc thoi ak
\(\begin{cases}\sqrt{x-1}-\sqrt{y}=8-x^3\left(1\right)\\\left(x-1\right)^4=y\left(2\right)\end{cases}\)
Đk: \(x\ge1;y\ge0\)
Thay (2) vào (1) ta đc:
\(\sqrt{x-1}-\left(x-1\right)^2=-x^3+8\)
\(\Leftrightarrow\sqrt{x-1}-1=-x^3+x^2-2x+8\)
\(\Leftrightarrow\sqrt{x-1}-1\cdot\frac{\sqrt{x-1}+1}{\sqrt{x-1}+1}=\left(-x^3+2x^2\right)-\left(x^2-2x\right)-\left(4x-8\right)\)
\(\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}=\frac{x-2}{-x^2-x-4}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\\sqrt{x-1}+1=-x^2-x-4\left(3\right)\end{array}\right.\)
(3) vô nghiệm do \(VT>0;VP< 0\) với mọi x
\(\Leftrightarrow x=2\left(tm\left(x\ge1\right)\right)\Rightarrow y=1\)
Vậy hệ pt đã cho có nghiệm x = 2; y = 1
trong cac phan so sau :2/3 ;2/8 ;17/300 ;1/30.phan so thap phan la phan so
Điều kiện x>1
Từ (1) ta có \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3
Đặt \(t=\log_2\left(x^2-2x+5\right)\)
Tìm điều kiện của t :
- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)
- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)
Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3
- Ta có \(x^2-2x+5=2'\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)
Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)
Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)
Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)
- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)
- Bảng biến thiên :
x | 2 \(\frac{5}{2}\) 3 |
y' | + 0 - |
y | -6 -6 -\(\frac{25}{4}\) |
Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6
ĐKXĐ: \(x\ge0\)
Phương trình (1) \(\Leftrightarrow\frac{x}{\sqrt{x+1}+1}\left(\sqrt{y^2+1}+y\right)=\sqrt{x}\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\frac{\sqrt{x}\left(\sqrt{y^2+1}+y\right)}{\left(\sqrt{x+1}+1\right)}=1\left(3\right)\end{matrix}\right.\)
\(\sqrt{x}=0\Leftrightarrow x=0\Rightarrow y=-2\)
\(\left(3\right)\Rightarrow\left(\sqrt{y^2+1}-y\right)\left(\sqrt{x+1}+1\right)=\sqrt{x}=\left(\sqrt{y^2+1}+y\right)\left(\sqrt{x+1}-1\right)\Leftrightarrow\sqrt{y^2+1}=y\sqrt{x+1}\Rightarrow y^2+1=xy^2+y^2\Leftrightarrow xy^2=1\left(4\right)\)
Với y=0 hệ vô nghiệm
Với y khác 0 thay (4) vào pt 1 được \(\left(\sqrt{\frac{1}{y^2}+1}-1\right)\left(\sqrt{y^2+1}+y\right)=\sqrt{\frac{1}{y^2}}\\ \Leftrightarrow\left(\sqrt{y^2+1}-\left|y\right|\right)\left(\sqrt{y^2+1}+y\right)=1\left(5\right)\)
Với y<0 thì (5): \(\left(\sqrt{y^2+1}+y\right)^2=1\) vô nghiệm
Ta thấy (5) đúng với mọi y
Thay (4) vào pt (2) suy ra \(y^7+2y^6+y^5-2y^2-2=0\Leftrightarrow\left(y-1\right)\left(y^6+3y^5+4y^4+4y^3+4y^2+4y+2\right)=0\)
Phương trình này có nghiệm duy nhất là y=1 trên (0,dương VC)=>x=1
Vậy hệ có hai nghiệm là (1,1) và (0,-2)
Ta có \(x-\sqrt{x^2+4}\ne0\) và \(y-\sqrt{y^2+1}\ne0\)
Nhân 2 vế của pt đầu cho \(x-\sqrt{x^2+4}\) ta được:
\(x-\sqrt{x^2+4}=-2\left(y+\sqrt{y^2+1}\right)\) (1)
Nhân 2 vế của pt đầu cho \(y-\sqrt{y^2+1}\) ta được:
\(x+\sqrt{x^2+4}=-2\left(y-\sqrt{y^2+1}\right)\) (2)
Cộng vế với vế của (1) và (2) ta được: \(2x=-4y\Rightarrow x=-2y\)
Biến đổi pt dưới 1 chút:
\(3\left(-2y\right)^2+5\left(-2y\right)+2=2\sqrt[3]{x^3+1}\)
\(\Leftrightarrow3x^2+5x+2=2\sqrt[3]{x^3+1}\)
\(\Leftrightarrow x^3+3x^2+3x+1+2\left(x+1\right)=x^3+1+2\sqrt[3]{x^3+1}\)
\(\Leftrightarrow\left(x+1\right)^3+2\left(x+1\right)=\left(\sqrt[3]{x^3+1}\right)^3+2\sqrt[3]{x^3+1}\)
Xét hàm \(f\left(t\right)=t^3+2t\), ta có \(f'\left(t\right)=3t^2+2>0\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow x+1=\sqrt[3]{x^3+1}\Leftrightarrow\left(x+1\right)^3=x^3+1\)
\(\Leftrightarrow x^3+3x^2+3x+1=x^3+1\Leftrightarrow x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x=-1\Rightarrow y=\dfrac{1}{2}\end{matrix}\right.\)
bạn tách từng câu ra mik suy nghĩ từng câu
bạn trả lời từng câu cũng được mà :) làm được câu nào thì giúp mình nhé. Tks!