K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2023

Có 26 chữ cái tiếng Anh và 10 chữ số (từ 0 đến 9).

a) Để tạo một mã bưu chính, ta thực hiện sáu hành động liên tiếp: chọn chữ cái đầu tiên, chọn chữ số thứ hai, chọn chữ cái thứ ba, chọn chữ số thứ tư, chọn chữ cái thứ năm và chọn chữ số thứ sáu.

Mỗi chữ cái được chọn từ 26 chữ cái tiếng Anh nên có 26 cách chọn một chữ cái.

Mỗi chữ số được chọn từ 10 chữ số nên có 10 cách chọn một chữ số.

Vậy có thể tạo được 26 . 10 . 26 . 10 . 26 . 10 = 17 576 000 mã bưu chính.

b) Để tạo một mã bưu chính bắt đầu bằng chữ S, ta thực hiện sáu hành động liên tiếp: chọn chữ cái đầu tiên là S, chọn chữ số thứ hai, chọn chữ cái thứ ba, chọn chữ số thứ tư, chọn chữ cái thứ năm và chọn chữ số thứ sáu.

Chữ cái đầu tiên là S: có 1 cách chọn.

Chọn các chữ cái còn lại, mỗi vị trí có 26 cách chọn.

Chọn các chữ số, mỗi vị trí có 10 cách chọn.

Vậy có thể tạo được 1 . 10 . 26 . 10 . 26 . 10 = 676 000 mã bắt đầu bằng chữ S.

c) Để tạo một mã bưu chính bắt đầu bằng chữ S và kết thúc bằng chữ số 8, ta thực hiện sáu hành động liên tiếp: chọn chữ cái đầu tiên là S, chọn chữ số thứ hai, chọn chữ cái thứ ba, chọn chữ số thứ tư, chọn chữ cái thứ năm và chọn chữ số thứ sáu là chữ số 8.

Chữ cái đầu tiên là S: có 1 cách chọn.

Chọn các chữ cái còn lại, mỗi vị trí có 26 cách chọn.

Chọn chữ số thứ sáu (kết thúc) là 8: có 1 cách chọn.

Chọn các chữ số còn lại, mỗi vị trí có 10 cách chọn.

Vậy có thể tạo được 1 . 10 . 26 . 10 . 26 . 1 = 67 600 mã bắt đầu bằng chữ S và kết thúc bằng chữ số 8.

Số các số tự nhiên có 5 chữ số khác nhau lập nên từ 5 chữ số này là 5!=120(số)

Số các số tự nhiên có 5 chữ số khác nhau lập nên từ 5 chữ số này có bắt đầu là 34 là: 3!=6(số)

=>Có 120-6=114(số) cần tìm

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

+) Số cách chọn 3 kí tự đầu tiên là 3 chữ cái trong bảng gồm 26 chữ cái in thường là: \(A_{26}^3\) (cách)

+) Số cách chọn 5 kí tự tiếp theo là chữ số là: \(A_{10}^5\) (cách)

+) Áp dụng quy tắc nhân, số mật khẩu Việt có thể tạo ra là: \(A_{26}^3.A_{10}^5\)(mật khẩu)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Mỗi kí tự đều có 10 cách chọn.

Số mật khẩu có thể tạo ra là 10. 10. 10 = 1000

b) - Kí tự đầu có 26 cách chọn.

- 2 kí tự sau, mỗi kí tự có 10 cách chọn.

Quy định mới có thể tạo ra số mật khẩu là:

 26. 10. 10 = 2600

Quy định mới có thể tạo được nhiều hơn quy định cũ số mật khẩu khác nhau là:

    2600 - 1000= 1600 (mật khẩu)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Để gắn nhãn cho các ghế ta chọn chọn 1 chữ cái in hoa và 1 số (từ 1 đến 20).

Số cách chọn chữ cái in hoa: 26 cách (tương ứng với 26 chữ)

Số cách chọn số: 20 cách 

Vậy số ghế gắn nhãn tối đa là 26.20 = 520 (ghế)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

+) Số cách chọn 4 kí tự đầu tiên là: \(A_{10}^4\) (cách chọn)

+) Số cách chọn 2 kí tự tiếp theo là: \(C_{26}^1.C_{26}^1\) (cách chọn)

+) Số cách chọn 1 kí tự tiếp theo là: \(C_{26}^1\) (cách chọn)

+) Số cách chọn 1 kí tự cuối cùng là: \(C_{10}^1\) (cách chọn)

+) Áp dụng quy tắc nhân, ta có số mật khẩu có thể tạo thành là:

\(A_{10}^4.C_{26}^1.C_{26}^1.C_{26}^1.C_{10}^1\) ( mật khẩu)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số cách viết một dãy 5 chữ cái in hoa từ bảng chữ cái tiếng Anh (gồm 26 chữ cái) là: \({26^5}\)

b)    Số cách viết một dãy 5 chữ cái in hoa  khác nhau từ bảng chữ cái tiếng Anh (gồm 26 chữ cái) là: \(A_{26}^5\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Mỗi cách chọn 1 chữ số cho mật mã là 1 trong 10 cách chọn các chữ số từ 0 đến 9. Vậy có tổng cả 10 cách chọn cho mỗi chữ số

Dãy mật mã có 3 chữ số nên có \({10^3}\) cách chọn mật mã cho khóa

Số cách chọn là:

\(A^2_{26}\cdot C^2_5\cdot C^2_5\cdot4!=1560000\left(cách\right)\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)

b)    Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).

Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:

       8. 3! = 48 (số)