Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những số nguyên tố có thể là ước của số có dạng 111là{1;3;37;111}
`B=x^2-9=0`
`-> x^2=0+9`
`-> x^2=9`
`-> x^2=(+-3)^2`
`-> x=+-3`
Vậy, đa thức `B` có `2` nghiệm là `x={3 ; -3}`.
Xét n=1 thì K=2\(\Rightarrow2K-1=3,2K+1=5\)
Xét n>1 thì K chia hết cho 3,từ đây dễ dàng suy ra 2K-1 chia 3 dư 2 à do đó 2K-1 không là số chính phương
Mặt khác thì 2K+1 lẻ nên nếu 2K+1 là số chính phương thì 2K+1 chia 8 dư 1(1)
Mà với n>1 thì K có dạng 2.2.M=4M,trong đó M là tích các số nguyên tố liền sau 2
Ta thấy M lẻ nên đặt M=2t+1 suy ra 2K+1=4.(2t+1)+1=8t+5,mâu thuẫn với (1)
Vậy 2K-1 và 2K+1 không là số chính phương
Xét 3 số tự nhiên liên tiếp p, p + 1, p + 2.
Vì p và p + 2 là số nguyên tố lớn hơn 3 => p và p + 2 ko chia hết cho 3 => p + 1 phải chia hết cho 3 (1)
Vì p và p + 2 là số nguyên tố lớn hơn 3 => p và p + 2 ko chia hết cho 2 => p + 1 phải chia hết cho 2 (2)
Từ (1) và (2) kết hợp với ƯCLN (3,2) = 1 => p + 1 chia hết cho 2.3 => p + 1 chia hết cho 6
Do số đã cho là số lẻ nên ko chia hết cho 2
Do số đã cho có tận cùng khác 0, 5 nên ko chia hết cho 5
Gọi p là 1 số nguyên tố nào đó, với \(p\ne\left\{2;5\right\}\) \(\Rightarrow2^x.5^y\) nguyên tố cùng nhau p
\(\Rightarrow10^z\) nguyên tố cùng nhau với p với mọi z nguyên dương
Ta xét dãy gồm p+1 số có dạng:
1; 11; 111; ...; 111...11 (p+1 chữ số 1)
Theo nguyên lý Dirichlet, trong p+1 số trên có ít nhất 2 số có cùng số dư khi chia hết cho p
Giả sử đó là 111..11 (m chữ số 1) và 111...11 (n chữ số 1), với \(m< n\le p\)
\(\Rightarrow111...11\left(n\text{ chữ số 1}\right)-111...11\left(m\text{ chữ số 1}\right)\) chia hết cho p
\(\Rightarrow111...11000...00\left(a\text{ chữ số 1}\text{ và b chữ số 0}\right)\) chia hết cho p (với a<m)
\(\Rightarrow111...11.10^b\) chia hết cho p
Mà \(10^p\) nguyê tố cùng nhau với p
\(\Rightarrow111...11\left(a\text{ chữ số 1}\right)\) chia hết cho p
Vậy với mọi số nguyên tố p khác 2 và 5, luôn luôn tìm được ít nhất 1 số có dạng 111...11 chia hết cho p
\(\Rightarrow\) Mọi số nguyên tố, trừ 2 và 5, đều có thể là ước của số có dạng 111...11
Em cảm ơn thầy nhiều ạ!!